使用gallery-dl下载DeviantArt作品描述信息的技术指南
2025-05-17 16:57:57作者:何举烈Damon
在DeviantArt平台上,每幅作品通常都附带有创作者提供的详细描述信息。对于使用gallery-dl工具进行批量下载的用户来说,如何高效地获取这些描述信息是一个常见需求。本文将详细介绍几种不同的方法来实现这一目标。
基础命令行方法
最直接的方式是通过命令行参数来指定下载描述信息:
gallery-dl --write-metadata -o metadata=true "URL"
这个命令会下载作品本身以及所有可用的元数据信息。如果只需要下载描述信息而不需要其他元数据,可以使用以下命令:
gallery-dl --write-metadata -o metadata=true -O format="{description}" -O extension=txt "URL"
这个命令会将描述信息单独保存为与图片同名的.txt文件。
配置文件方法
对于需要频繁下载DeviantArt作品的用户,使用配置文件是更高效的方式。在gallery-dl.conf文件中添加以下配置:
{
"extractor": {
"deviantart": {
"metadata": true
}
},
"postprocessor": {
"descr": {
"name": "metadata",
"format": "{description}",
"extension": "txt"
}
}
}
配置完成后,可以通过-P descr参数来启用描述信息下载:
gallery-dl -P descr "URL"
更新已有作品描述
如果已经下载了作品但缺少描述信息,可以使用以下命令来补充下载:
gallery-dl --write-metadata -o metadata=true -O format="{description}" -O extension=txt -O event=file,skip "URL"
这个命令中的event=file,skip参数会确保工具检查所有文件,包括已经下载过的作品,并补充下载缺失的描述信息。
注意事项
- 在下载描述信息前,建议先清理旧的下载缓存或临时文件,以避免冲突
- 对于大型画廊,下载所有描述信息可能需要较长时间
- 某些作品的描述可能包含特殊字符或格式,保存为文本文件时可能会有所调整
- 确保使用的gallery-dl版本支持metadata功能
通过以上方法,用户可以灵活地选择适合自己需求的方式来获取DeviantArt作品的描述信息,无论是单独下载还是与作品一起下载,都能轻松实现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
766
暂无简介
Dart
598
132
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
744
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232