Apache Arrow DataFusion 中 AggregateFunctionExpr 显示格式优化
在 Apache Arrow DataFusion 项目中,查询执行计划的可读性对于开发者理解和调试查询性能至关重要。近期社区针对执行计划中聚合函数表达式的显示格式进行了优化讨论,旨在简化冗余信息,提升可读性。
问题背景
在 DataFusion 的执行计划可视化输出中,AggregateExec 节点的显示包含了聚合函数的详细信息。当前输出格式如下示例:
┌─────────────┴─────────────┐
│ AggregateExec │
│ -------------------- │
│ aggr: count(Int64(1)) │
│ mode: Final │
└─────────────┬─────────────┘
这种显示方式虽然完整,但包含了过多的冗余信息。特别是对于聚合函数表达式 count(Int64(1)),其中的 Int64(1) 部分对于理解聚合操作的本质并无太大帮助,反而增加了视觉复杂度。
技术分析
通过深入代码分析,发现问题根源在于 create_aggregate_expr_and_maybe_filter 函数中聚合表达式名称的生成机制。当前实现使用了 Expr 的 SchemaDisplay 来为所有表达式生成调试信息,这导致了输出过于详细。
解决方案设计
经过技术讨论,社区提出了以下优化方案:
-
新增 SQL 名称字段:在
AggregateFunctionExpr结构体中添加sql_name成员,专门用于存储简洁的 SQL 风格名称。 -
引入格式化方法:为
Exprtrait 添加新的方法fmt_sql_name(),类似于现有的schema_name()方法。在AggregateFunction中重写此方法,生成更符合 SQL 习惯的简洁名称。 -
修改显示逻辑:调整
AggregateExec中的fmt_as实现,使用新的aggr_expr.sql_name而非原来的详细名称。
实现意义
这一优化将带来以下好处:
- 提升可读性:执行计划输出更加简洁明了,便于开发者快速理解查询结构。
- 保持一致性:使 DataFusion 的执行计划显示风格更接近传统数据库系统。
- 降低认知负担:去除不必要的信息,让开发者专注于查询的核心逻辑。
技术实现细节
在实际实现中,需要注意以下几点:
-
向后兼容:确保修改不会破坏现有依赖于执行计划格式的工具或测试。
-
名称生成规则:精心设计
sql_name的生成逻辑,确保既能提供足够信息,又不过于冗长。 -
性能考量:新增的
sql_name字段应在构造表达式时一次性计算好,避免每次显示时重复计算。
总结
通过对 AggregateFunctionExpr 显示格式的优化,DataFusion 的执行计划可读性得到了显著提升。这一改进体现了项目对开发者体验的持续关注,也是开源社区协作解决实际问题的典型案例。未来,类似的优化思路可以扩展到其他表达式类型的显示处理中,进一步提升 DataFusion 的整体可用性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00