首页
/ Malcolm项目测试框架中的PCAP数据存储方案探讨

Malcolm项目测试框架中的PCAP数据存储方案探讨

2025-07-04 00:41:35作者:邓越浪Henry

在开源网络安全分析平台Malcolm的开发过程中,构建自动化测试框架是一个关键环节。其中,测试数据的管理特别是PCAP网络流量捕获文件的存储方案,成为了项目团队需要解决的重要技术问题。

PCAP数据在测试中的重要性

PCAP文件作为网络流量分析的原始数据,在Malcolm系统的测试过程中扮演着核心角色。这些文件不仅用于验证系统的基本功能,还用于性能测试、回归测试以及新功能的集成测试。高质量的测试数据集能够确保Malcolm系统在实际部署中的稳定性和准确性。

存储方案的技术考量

项目团队最初评估了Git LFS(大文件存储)作为解决方案。Git LFS是专门为版本控制系统管理大文件而设计的扩展,它通过指针文件替代实际大文件,只在需要时下载具体内容。这种方案理论上非常适合PCAP这类二进制大文件的版本管理。

然而,GitHub对Git LFS服务有明确的限制:免费账户每月仅有1GB的带宽和1GB的存储空间。考虑到Malcolm项目测试所需的PCAP数据量,这个配额显然不够。虽然GitHub提供付费升级选项,但项目团队在评估过程中遇到了资金审批和流程上的困难。

最终解决方案

经过多方权衡,团队决定采用一个替代方案:创建一个专门的普通Git仓库来存放测试数据。这个名为Malcolm-Test-Artifacts的仓库位于Idaho实验室的GitHub组织下。虽然这不是最理想的解决方案(因为Git本身并不擅长处理大文件),但在当前阶段能够满足基本需求。

这种方案有几个显著优势:

  1. 完全免费,没有额外的服务成本
  2. 简化了技术栈,不需要维护额外的Git LFS基础设施
  3. 保持了测试数据与代码的相对独立性
  4. 便于团队内部共享和管理

未来优化方向

项目团队意识到当前的解决方案只是权宜之计。随着测试需求的增长和PCAP数据集的扩大,未来可能需要考虑更专业的存储方案,例如:

  • 搭建自托管的Git LFS服务器
  • 使用对象存储服务如Backblaze B2
  • 开发智能的数据集管理工具,按需加载测试数据

总结

Malcolm项目通过创建专用测试数据仓库的方式,巧妙地绕过了GitHub对大文件的限制,为自动化测试框架提供了必要的数据支持。这个案例展示了开源项目在面对基础设施限制时的灵活应对策略,也为其他类似项目提供了有价值的参考。随着项目发展,团队将继续优化测试数据的存储和管理方案,以支持更全面、更高效的自动化测试。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8