Hallo项目训练过程中NaN问题的分析与解决
2025-05-27 19:03:21作者:羿妍玫Ivan
问题背景
在使用Hallo项目进行深度学习模型训练时,开发者遇到一个典型的技术问题:当从检查点(checkpoint)恢复训练时,模型预测值出现NaN(非数值)情况,最终导致训练失败。这种情况在深度学习训练中并不罕见,但需要系统性地分析和解决。
问题现象
开发者观察到以下关键现象:
- 从检查点恢复训练后,模型预测值立即变为NaN
- 损失函数值显示为NaN
- DeepSpeed的loss scaler不断降低缩放比例,最终达到最小值1后训练崩溃
- 错误信息显示"Current loss scale already at minimum - cannot decrease scale anymore"
技术分析
NaN问题的常见原因
在深度学习训练中,NaN值通常由以下几种情况导致:
- 数值不稳定:梯度爆炸或消失
- 学习率设置不当
- 模型权重初始化问题
- 数据预处理错误
- 检查点文件损坏
DeepSpeed Loss Scaler机制
DeepSpeed使用loss scaler来管理混合精度训练中的数值稳定性。当检测到溢出(overflow)时,scaler会自动降低缩放比例。连续多次降低后达到最小值1时,系统会终止训练以防止进一步的不稳定。
问题排查与解决
开发者通过以下步骤最终解决了问题:
- 检查模型权重加载:确认没有缺失或意外的键
- 验证优化器状态:确保优化器被正确加载
- 检查进程配置:确认使用与检查点相同的num_processes
- 检查预训练模型:最终发现预训练模型文件损坏
关键发现是预训练模型文件损坏导致了权重加载异常,进而引发数值不稳定。重新下载预训练模型文件后问题得到解决。
预防措施
为避免类似问题,建议:
- 在训练前验证所有模型文件的完整性
- 实现文件校验机制(如MD5校验)
- 在恢复训练前先进行小批量测试
- 定期保存多个检查点备份
- 监控训练初期的损失值和梯度情况
总结
Hallo项目中遇到的这个NaN问题展示了深度学习训练中一个典型场景:检查点恢复失败。通过系统性的排查,最终定位到预训练模型文件损坏这一根本原因。这提醒我们在深度学习实践中,不仅要关注算法和超参数,也要重视数据管理和文件完整性检查。
对于使用DeepSpeed等复杂训练框架的项目,理解其内部机制(如loss scaler)对于调试此类问题尤为重要。建立完善的训练监控和验证流程可以显著提高训练过程的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660