Tippecanoe 项目下载及安装教程
1. 项目介绍
Tippecanoe 是一个用于从大型 GeoJSON、FlatGeobuf 或 CSV 特征集合构建矢量瓦片集的开源工具。它由 Erica Fischer 在 Felt 开发并积极维护。Tippecanoe 的目标是创建一个与比例无关的视图,以便在从整个世界到单个建筑物的任何级别上,用户都能看到数据的密度和纹理,而不是通过删除所谓的次要特征或聚类、聚合它们来简化数据。
2. 项目下载位置
Tippecanoe 的项目源代码托管在 GitHub 上。你可以通过以下命令克隆项目到本地:
git clone https://github.com/felt/tippecanoe.git
3. 项目安装环境配置
3.1 操作系统
Tippecanoe 可以在多种操作系统上运行,包括 macOS 和 Ubuntu。以下是两种常见操作系统的安装环境配置示例。
3.1.1 macOS
在 macOS 上,你可以使用 Homebrew 来安装 Tippecanoe。首先,确保你已经安装了 Homebrew。如果没有安装,可以通过以下命令安装:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
安装完成后,使用 Homebrew 安装 Tippecanoe:
brew install tippecanoe
3.1.2 Ubuntu
在 Ubuntu 上,你需要从源代码构建 Tippecanoe。首先,确保你已经安装了必要的依赖项:
sudo apt-get update
sudo apt-get install -y build-essential libsqlite3-dev zlib1g-dev
3.2 环境配置示例
以下是 macOS 和 Ubuntu 的环境配置示例图片:


4. 项目安装方式
4.1 macOS
如前所述,在 macOS 上使用 Homebrew 安装 Tippecanoe 是最简单的方式:
brew install tippecanoe
4.2 Ubuntu
在 Ubuntu 上,你需要从源代码构建 Tippecanoe。首先克隆项目:
git clone https://github.com/felt/tippecanoe.git
cd tippecanoe
然后编译并安装:
make -j
sudo make install
5. 项目处理脚本
Tippecanoe 提供了多种命令行选项来处理不同的数据源。以下是一个简单的示例脚本,用于处理 GeoJSON 文件并生成矢量瓦片集:
tippecanoe -o output.mbtiles -zg --drop-densest-as-needed input.geojson
这个脚本将 input.geojson 文件转换为 output.mbtiles 文件,并自动选择合适的最大缩放级别,同时根据需要丢弃最不明显的特征。
通过以上步骤,你应该能够成功下载、安装并使用 Tippecanoe 项目。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00