iTransformer项目自定义数据集使用指南
2025-07-10 21:18:41作者:钟日瑜
iTransformer作为时间序列预测领域的重要开源项目,其灵活性和可扩展性使其能够支持用户自定义数据集的训练与预测。本文将详细介绍如何在iTransformer项目中加载和使用自定义数据集进行多变量时间序列预测。
数据集准备
在使用自定义数据集前,需要确保数据格式符合项目要求。iTransformer主要处理多变量时间序列预测问题,因此数据集应包含多个特征的时间序列数据。
典型的数据集应包含以下要素:
- 时间维度:记录数据的时间戳或时间序列索引
- 特征维度:多个相关变量的观测值
- 适当的数据长度:足够的历史数据用于模型训练
数据集结构规范
自定义数据集需要遵循特定的文件结构才能被iTransformer正确加载。项目要求数据集以CSV格式存储,并放置在指定的目录结构中。
数据文件的基本要求:
- 使用逗号分隔的CSV格式
- 首行为特征名称(列名)
- 每行代表一个时间步的观测值
- 缺失值应进行适当处理(如填充或删除)
数据集配置
在iTransformer项目中,需要通过修改配置文件来指定自定义数据集。主要涉及以下几个关键参数:
- 数据路径:指定数据集文件的存放位置
- 数据划分:设置训练集、验证集和测试集的比例
- 预测长度:定义模型需要预测的未来时间步数
- 历史窗口:确定模型输入的历史数据长度
数据预处理
iTransformer内置了标准化的数据预处理流程,包括:
- 标准化/归一化:自动对数据进行z-score标准化
- 缺失值处理:提供多种填充策略
- 序列分割:将长序列分割为适合模型输入的片段
- 数据增强:可选的时间序列增强技术
训练自定义数据集
准备好数据集后,可以通过修改运行脚本来启动训练。主要步骤包括:
- 指定数据集名称和路径
- 设置模型超参数
- 定义训练周期和批量大小
- 选择优化器和学习率策略
结果评估
训练完成后,iTransformer提供多种评估指标来检验模型在自定义数据集上的表现:
- 均方误差(MSE)
- 平均绝对误差(MAE)
- 对称平均绝对百分比误差(sMAPE)
- 标准化均方根误差(NRMSE)
最佳实践建议
- 确保数据集足够大,避免过拟合
- 进行充分的数据探索分析
- 尝试不同的历史窗口和预测长度组合
- 使用交叉验证评估模型稳定性
- 记录完整的实验配置和结果
通过遵循上述指南,研究人员可以有效地将iTransformer应用于各种自定义时间序列数据集,解决实际业务中的预测问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
731
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460