Latitude LLM项目中的评估系统架构优化实践
在大型语言模型(LLM)应用开发中,评估系统是确保模型输出质量的关键组件。Latitude LLM项目近期对其评估系统进行了重要的架构调整,将评估从工作区级别迁移到了提示词级别,这一改进显著提升了系统的可用性和功能性。
原有架构的问题
在旧版架构中,评估(Evaluations)是在工作区(Workspace)级别创建的,然后通过关联方式连接到具体的提示词(Prompt)。这种设计存在几个明显的局限性:
-
评估与提示词的关联性不强:大多数评估实际上都是针对特定提示词设计的,工作区级别的创建方式增加了不必要的抽象层级。
-
版本控制困难:由于评估独立于提示词存在,难以实现评估与提示词版本的同步管理。
-
用户体验复杂:用户需要在不同层级间切换才能完成评估设置,增加了操作步骤。
新架构设计
新版评估系统采用了更加直观和高效的设计:
-
提示词级别的评估创建:现在用户可以直接在提示词界面创建和管理评估,消除了不必要的抽象层级。
-
内置版本控制:评估与提示词紧密结合,可以随着提示词的版本更新而同步演进。
-
简化的用户流程:所有评估相关操作都可以在提示词界面完成,减少了上下文切换。
技术实现考量
这一架构变更涉及多个技术层面的调整:
-
数据模型重构:评估实体从与工作区关联改为与提示词直接关联,需要修改数据库schema和API接口。
-
权限系统调整:评估的访问控制需要与提示词的权限体系保持一致。
-
版本管理集成:确保评估能够与提示词版本一起被追踪和管理。
带来的优势
新的评估架构为用户和开发者带来了多方面好处:
-
更直观的工作流:开发者可以更自然地针对特定提示词创建评估用例。
-
更好的可追溯性:评估历史与提示词版本一起保存,便于回溯和分析。
-
增强的协作能力:团队成员可以更清晰地看到每个提示词对应的评估标准。
-
提高开发效率:减少了在界面间切换的时间,聚焦于核心的提示工程工作。
未来发展方向
基于这一架构改进,项目团队可以进一步探索:
-
自动化评估流水线:结合提示词版本实现自动化的评估执行。
-
评估模板库:建立可复用的评估用例集合,加速新提示词的开发。
-
跨提示词评估:在保持当前架构优势的同时,支持某些需要跨提示词比较的评估场景。
这一架构优化体现了Latitude LLM项目对开发者体验的持续关注,通过简化核心工作流来提升整个提示工程的效率和质量。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00