Latitude LLM项目中的评估系统架构优化实践
在大型语言模型(LLM)应用开发中,评估系统是确保模型输出质量的关键组件。Latitude LLM项目近期对其评估系统进行了重要的架构调整,将评估从工作区级别迁移到了提示词级别,这一改进显著提升了系统的可用性和功能性。
原有架构的问题
在旧版架构中,评估(Evaluations)是在工作区(Workspace)级别创建的,然后通过关联方式连接到具体的提示词(Prompt)。这种设计存在几个明显的局限性:
-
评估与提示词的关联性不强:大多数评估实际上都是针对特定提示词设计的,工作区级别的创建方式增加了不必要的抽象层级。
-
版本控制困难:由于评估独立于提示词存在,难以实现评估与提示词版本的同步管理。
-
用户体验复杂:用户需要在不同层级间切换才能完成评估设置,增加了操作步骤。
新架构设计
新版评估系统采用了更加直观和高效的设计:
-
提示词级别的评估创建:现在用户可以直接在提示词界面创建和管理评估,消除了不必要的抽象层级。
-
内置版本控制:评估与提示词紧密结合,可以随着提示词的版本更新而同步演进。
-
简化的用户流程:所有评估相关操作都可以在提示词界面完成,减少了上下文切换。
技术实现考量
这一架构变更涉及多个技术层面的调整:
-
数据模型重构:评估实体从与工作区关联改为与提示词直接关联,需要修改数据库schema和API接口。
-
权限系统调整:评估的访问控制需要与提示词的权限体系保持一致。
-
版本管理集成:确保评估能够与提示词版本一起被追踪和管理。
带来的优势
新的评估架构为用户和开发者带来了多方面好处:
-
更直观的工作流:开发者可以更自然地针对特定提示词创建评估用例。
-
更好的可追溯性:评估历史与提示词版本一起保存,便于回溯和分析。
-
增强的协作能力:团队成员可以更清晰地看到每个提示词对应的评估标准。
-
提高开发效率:减少了在界面间切换的时间,聚焦于核心的提示工程工作。
未来发展方向
基于这一架构改进,项目团队可以进一步探索:
-
自动化评估流水线:结合提示词版本实现自动化的评估执行。
-
评估模板库:建立可复用的评估用例集合,加速新提示词的开发。
-
跨提示词评估:在保持当前架构优势的同时,支持某些需要跨提示词比较的评估场景。
这一架构优化体现了Latitude LLM项目对开发者体验的持续关注,通过简化核心工作流来提升整个提示工程的效率和质量。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00