Latitude LLM项目中的评估系统架构优化实践
在大型语言模型(LLM)应用开发中,评估系统是确保模型输出质量的关键组件。Latitude LLM项目近期对其评估系统进行了重要的架构调整,将评估从工作区级别迁移到了提示词级别,这一改进显著提升了系统的可用性和功能性。
原有架构的问题
在旧版架构中,评估(Evaluations)是在工作区(Workspace)级别创建的,然后通过关联方式连接到具体的提示词(Prompt)。这种设计存在几个明显的局限性:
-
评估与提示词的关联性不强:大多数评估实际上都是针对特定提示词设计的,工作区级别的创建方式增加了不必要的抽象层级。
-
版本控制困难:由于评估独立于提示词存在,难以实现评估与提示词版本的同步管理。
-
用户体验复杂:用户需要在不同层级间切换才能完成评估设置,增加了操作步骤。
新架构设计
新版评估系统采用了更加直观和高效的设计:
-
提示词级别的评估创建:现在用户可以直接在提示词界面创建和管理评估,消除了不必要的抽象层级。
-
内置版本控制:评估与提示词紧密结合,可以随着提示词的版本更新而同步演进。
-
简化的用户流程:所有评估相关操作都可以在提示词界面完成,减少了上下文切换。
技术实现考量
这一架构变更涉及多个技术层面的调整:
-
数据模型重构:评估实体从与工作区关联改为与提示词直接关联,需要修改数据库schema和API接口。
-
权限系统调整:评估的访问控制需要与提示词的权限体系保持一致。
-
版本管理集成:确保评估能够与提示词版本一起被追踪和管理。
带来的优势
新的评估架构为用户和开发者带来了多方面好处:
-
更直观的工作流:开发者可以更自然地针对特定提示词创建评估用例。
-
更好的可追溯性:评估历史与提示词版本一起保存,便于回溯和分析。
-
增强的协作能力:团队成员可以更清晰地看到每个提示词对应的评估标准。
-
提高开发效率:减少了在界面间切换的时间,聚焦于核心的提示工程工作。
未来发展方向
基于这一架构改进,项目团队可以进一步探索:
-
自动化评估流水线:结合提示词版本实现自动化的评估执行。
-
评估模板库:建立可复用的评估用例集合,加速新提示词的开发。
-
跨提示词评估:在保持当前架构优势的同时,支持某些需要跨提示词比较的评估场景。
这一架构优化体现了Latitude LLM项目对开发者体验的持续关注,通过简化核心工作流来提升整个提示工程的效率和质量。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00