Latitude LLM项目中的评估系统架构优化实践
在大型语言模型(LLM)应用开发中,评估系统是确保模型输出质量的关键组件。Latitude LLM项目近期对其评估系统进行了重要的架构调整,将评估从工作区级别迁移到了提示词级别,这一改进显著提升了系统的可用性和功能性。
原有架构的问题
在旧版架构中,评估(Evaluations)是在工作区(Workspace)级别创建的,然后通过关联方式连接到具体的提示词(Prompt)。这种设计存在几个明显的局限性:
-
评估与提示词的关联性不强:大多数评估实际上都是针对特定提示词设计的,工作区级别的创建方式增加了不必要的抽象层级。
-
版本控制困难:由于评估独立于提示词存在,难以实现评估与提示词版本的同步管理。
-
用户体验复杂:用户需要在不同层级间切换才能完成评估设置,增加了操作步骤。
新架构设计
新版评估系统采用了更加直观和高效的设计:
-
提示词级别的评估创建:现在用户可以直接在提示词界面创建和管理评估,消除了不必要的抽象层级。
-
内置版本控制:评估与提示词紧密结合,可以随着提示词的版本更新而同步演进。
-
简化的用户流程:所有评估相关操作都可以在提示词界面完成,减少了上下文切换。
技术实现考量
这一架构变更涉及多个技术层面的调整:
-
数据模型重构:评估实体从与工作区关联改为与提示词直接关联,需要修改数据库schema和API接口。
-
权限系统调整:评估的访问控制需要与提示词的权限体系保持一致。
-
版本管理集成:确保评估能够与提示词版本一起被追踪和管理。
带来的优势
新的评估架构为用户和开发者带来了多方面好处:
-
更直观的工作流:开发者可以更自然地针对特定提示词创建评估用例。
-
更好的可追溯性:评估历史与提示词版本一起保存,便于回溯和分析。
-
增强的协作能力:团队成员可以更清晰地看到每个提示词对应的评估标准。
-
提高开发效率:减少了在界面间切换的时间,聚焦于核心的提示工程工作。
未来发展方向
基于这一架构改进,项目团队可以进一步探索:
-
自动化评估流水线:结合提示词版本实现自动化的评估执行。
-
评估模板库:建立可复用的评估用例集合,加速新提示词的开发。
-
跨提示词评估:在保持当前架构优势的同时,支持某些需要跨提示词比较的评估场景。
这一架构优化体现了Latitude LLM项目对开发者体验的持续关注,通过简化核心工作流来提升整个提示工程的效率和质量。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00