udlbook项目中的回归模型分类辨析
2025-05-30 01:19:38作者:伍希望
在统计学和机器学习领域,回归分析是最基础也最重要的方法之一。udlbook作为深度学习领域的权威教材,其内容准确性至关重要。本文针对其中关于回归模型分类的一个技术细节进行深入探讨。
回归模型的传统分类
传统统计学中,回归模型通常被分为两大类:
-
Model I回归(第一类回归):
- 误差仅存在于因变量(Y轴)
- 最小化的是平行于Y轴的距离(Y-on-X回归)或平行于X轴的距离(X-on-Y回归)
- 包括常见的普通最小二乘法(OLS)回归
-
Model II回归(第二类回归):
- 误差同时存在于自变量和因变量(X和Y轴)
- 最小化的是垂直于回归线的距离
- 包括主成分回归、缩减主轴回归等方法
udlbook中的概念澄清
在udlbook的答案手册中,曾将"判别式回归"(discriminative regression)和"生成式回归"(generative regression)分别对应为Model I和Model II回归。经过深入分析,这一对应关系存在概念偏差。
实际上,无论是判别式回归还是生成式回归,它们都属于Model I回归的范畴,因为它们都假设误差仅存在于一个维度(通常是Y轴),只是建模方式不同:
- 判别式回归:直接建模条件概率P(Y|X)
- 生成式回归:通过联合概率P(X,Y)间接推导条件概率
技术差异解析
两类回归模型的关键区别在于误差假设和优化目标:
-
误差假设差异:
- Model I:仅因变量有测量误差
- Model II:自变量和因变量都有测量误差
-
优化目标差异:
- Model I:最小化垂直或水平距离
- Model II:最小化正交距离(点到线的垂直距离)
-
应用场景差异:
- Model I:适用于可控实验,自变量可精确测量
- Model II:适用于观测性研究,变量都有测量误差
实际应用建议
在实际应用中,选择正确的回归模型类型至关重要:
- 当自变量是实验控制变量(如药物剂量、温度等)时,应采用Model I回归
- 当两个变量都是观测变量(如身高体重、两种仪器的测量值等)时,应采用Model II回归
- 在机器学习领域,判别式和生成式方法的选择应基于数据特性和任务需求,而非误差结构
总结
回归模型的正确分类和理解对于统计建模和机器学习实践至关重要。通过本文的分析,我们澄清了udlbook中关于回归模型分类的一个技术细节,帮助读者更准确地理解不同回归模型的本质区别和应用场景。这一认识将有助于在实际问题中选择合适的建模方法,获得更可靠的分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869