udlbook项目中的回归模型分类辨析
2025-05-30 14:54:40作者:伍希望
在统计学和机器学习领域,回归分析是最基础也最重要的方法之一。udlbook作为深度学习领域的权威教材,其内容准确性至关重要。本文针对其中关于回归模型分类的一个技术细节进行深入探讨。
回归模型的传统分类
传统统计学中,回归模型通常被分为两大类:
-
Model I回归(第一类回归):
- 误差仅存在于因变量(Y轴)
- 最小化的是平行于Y轴的距离(Y-on-X回归)或平行于X轴的距离(X-on-Y回归)
- 包括常见的普通最小二乘法(OLS)回归
-
Model II回归(第二类回归):
- 误差同时存在于自变量和因变量(X和Y轴)
- 最小化的是垂直于回归线的距离
- 包括主成分回归、缩减主轴回归等方法
udlbook中的概念澄清
在udlbook的答案手册中,曾将"判别式回归"(discriminative regression)和"生成式回归"(generative regression)分别对应为Model I和Model II回归。经过深入分析,这一对应关系存在概念偏差。
实际上,无论是判别式回归还是生成式回归,它们都属于Model I回归的范畴,因为它们都假设误差仅存在于一个维度(通常是Y轴),只是建模方式不同:
- 判别式回归:直接建模条件概率P(Y|X)
- 生成式回归:通过联合概率P(X,Y)间接推导条件概率
技术差异解析
两类回归模型的关键区别在于误差假设和优化目标:
-
误差假设差异:
- Model I:仅因变量有测量误差
- Model II:自变量和因变量都有测量误差
-
优化目标差异:
- Model I:最小化垂直或水平距离
- Model II:最小化正交距离(点到线的垂直距离)
-
应用场景差异:
- Model I:适用于可控实验,自变量可精确测量
- Model II:适用于观测性研究,变量都有测量误差
实际应用建议
在实际应用中,选择正确的回归模型类型至关重要:
- 当自变量是实验控制变量(如药物剂量、温度等)时,应采用Model I回归
- 当两个变量都是观测变量(如身高体重、两种仪器的测量值等)时,应采用Model II回归
- 在机器学习领域,判别式和生成式方法的选择应基于数据特性和任务需求,而非误差结构
总结
回归模型的正确分类和理解对于统计建模和机器学习实践至关重要。通过本文的分析,我们澄清了udlbook中关于回归模型分类的一个技术细节,帮助读者更准确地理解不同回归模型的本质区别和应用场景。这一认识将有助于在实际问题中选择合适的建模方法,获得更可靠的分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210