Hi-FT/ERD项目训练指南:从标准数据集到自定义数据集
2025-06-19 10:17:54作者:裘旻烁
项目概述
Hi-FT/ERD是一个基于MMDetection框架的目标检测与实例分割项目,提供了丰富的预训练模型和灵活的配置选项。本文将详细介绍如何在标准数据集和自定义数据集上进行模型训练,帮助用户快速上手项目并应用于实际场景。
标准数据集训练
准备工作
在开始训练前,需要确保已经准备好标准数据集(如COCO)。数据集应按照项目要求的格式组织,通常包括图像文件和对应的标注文件。
重要提示:某些配置文件(如configs/cityscapes下的配置)使用COCO预训练权重进行初始化。如果网络连接不稳定,建议提前下载好预训练模型以避免训练初期出现错误。
学习率自动缩放机制
项目支持学习率自动缩放功能,这是基于线性扩展规则实现的。默认配置针对8块GPU(每块2张图像,总batch size=16)设置。关键点包括:
- 自动缩放功能默认关闭,需通过
--auto-scale-lr参数启用 - 配置文件中
auto_scale_lr.base_batch_size定义了基准batch size - 不同配置文件的默认batch size可能不同,可通过文件名识别(如
_NxM_表示N GPU×M图像)
使用示例:
python tools/train.py config_file --auto-scale-lr
训练方式
单GPU训练
基本命令格式:
python tools/train.py config_file [可选参数]
常用参数说明:
--work-dir:指定工作目录--resume-from:从检查点恢复训练(保留优化器状态和迭代次数)--no-validate:关闭训练过程中的验证(不推荐)
CPU训练
虽然支持,但由于性能问题仅建议用于调试:
export CUDA_VISIBLE_DEVICES=-1
python tools/train.py config_file
多GPU训练
使用分布式训练脚本:
bash ./tools/dist_train.sh config_file GPU数量 [可选参数]
多任务并行时需指定不同端口避免冲突:
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh config_file 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh config_file 4
多机训练
通过以太网连接的多机训练命令: 第一台机器:
NNODES=2 NODE_RANK=0 PORT=MASTER_PORT MASTER_ADDR=MASTER_ADDR sh tools/dist_train.sh config_file GPUS
第二台机器:
NNODES=2 NODE_RANK=1 PORT=MASTER_PORT MASTER_ADDR=MASTER_ADDR sh tools/dist_train.sh config_file GPUS
Slurm集群管理
在Slurm管理的集群上训练:
GPUS=16 ./tools/slurm_train.sh 分区名称 任务名称 配置文件 工作目录
端口设置建议通过--options参数实现,避免修改原始配置文件:
--options 'dist_params.port=29500'
自定义数据集训练
数据集准备
项目支持三种自定义数据集方式:
- 转换为COCO格式(推荐)
- 转换为中间格式
- 实现全新数据集类
以balloon数据集为例,转换到COCO格式的关键步骤包括:
- 解析原始标注文件
- 构建COCO格式所需的images、annotations和categories字段
- 处理多边形标注和边界框信息
转换后的标注文件示例结构:
{
"images": [{"id": 0, "file_name": "image1.jpg", ...}],
"annotations": [{"image_id": 0, "category_id": 0, ...}],
"categories": [{"id": 0, "name": "balloon"}]
}
配置文件调整
基于现有配置修改是最高效的方式。以Mask R-CNN为例:
- 修改基础配置路径
- 调整模型head中的类别数
- 配置数据集路径和元信息
- 设置数据加载器和评估器
关键配置示例:
_base_ = '../mask_rcnn/base_config.py'
model = dict(
roi_head=dict(
bbox_head=dict(num_classes=1), # 修改为自定义类别数
mask_head=dict(num_classes=1)))
metainfo = {
'classes': ('balloon',), # 自定义类别名称
'palette': [(220, 20, 60)] # 可视化颜色
}
训练与评估
启动训练:
python tools/train.py configs/balloon/custom_config.py
模型测试:
python tools/test.py configs/balloon/custom_config.py work_dirs/checkpoint.pth
最佳实践建议
- 数据准备:确保标注质量,特别是边界框和多边形标注的准确性
- 学习率设置:对于小数据集,建议使用较小的学习率
- 预训练权重:尽量使用与目标领域相近的预训练模型
- 验证频率:根据数据集大小调整验证间隔,大数据集可适当减少验证频率
- 可视化分析:定期检查训练日志和预测结果,及时发现问题
通过本指南,用户应该能够顺利地在Hi-FT/ERD项目上开展从标准数据集到自定义数据集的模型训练工作。根据实际需求调整配置和参数,可以获得更好的模型性能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
107
136
暂无简介
Dart
570
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
294
39