Flowable引擎中脚本任务执行延迟问题分析与解决方案
2025-05-27 11:16:01作者:羿妍玫Ivan
问题背景
在使用Flowable 6.8.0版本作为BPMN流程引擎时,发现了一个影响流程执行效率的问题:在包含脚本任务的流程中,特别是在人工任务提交后的执行路径上,会出现明显的执行延迟。这种延迟通常发生在排他网关(ExclusiveGateway)评估脚本条件时,或者在脚本任务执行前后,延迟时间可达数秒级别。
问题现象
通过日志分析可以观察到以下典型现象:
- 延迟主要出现在
ExclusiveGatewayActivityBehavior执行脚本条件判断时 - 延迟偶尔也会出现在脚本任务执行后的流程流转过程中
- 该问题在包含人工任务的流程中表现尤为明显
- 简单的Groovy脚本条件判断也会触发此延迟
- 问题在Flowable多个版本中都存在,从5.x系列迁移到6.8.0后依然存在
根本原因分析
经过深入排查和测试验证,发现问题根源在于Flowable的脚本引擎处理机制:
- 脚本解析开销:每次执行脚本任务时,Flowable都需要对脚本进行解析和编译,即使是非常简单的脚本
- Groovy引擎初始化:Groovy脚本引擎在首次使用时需要初始化,这可能导致首次执行延迟
- 脚本缓存机制:默认配置下脚本可能没有被有效缓存,导致重复解析
- 人工任务后的上下文切换:人工任务完成后,流程引擎需要重建执行上下文,可能加剧了脚本解析的开销
解决方案
针对这一问题,推荐以下几种解决方案:
1. 替换脚本任务为服务任务
将原有的脚本任务替换为服务任务(Service Task)并使用表达式调用:
<serviceTask id="ulozenieVyhodnoteniaDoKP" name="Uloženie vyhodnotenia do KP"
flowable:expression="${vyhodnoteniePoziadavkyProcessScript.ulozenieVyhodnoteniaDoKP(execution)}" />
这种改造在实际测试中证实可以有效消除延迟问题。
2. 配置脚本引擎缓存
如果必须使用脚本任务,可以尝试配置脚本引擎的缓存策略:
// 在流程引擎配置中增加脚本引擎缓存配置
SpringProcessEngineConfiguration config = new SpringProcessEngineConfiguration();
config.setScriptingEngines(new ScriptingEngines(new ScriptEngineManager()));
config.getScriptingEngines().setScriptCacheSize(100); // 设置适当的缓存大小
3. 预编译常用脚本
对于频繁使用的脚本,可以考虑在系统启动时进行预编译:
@PostConstruct
public void precompileScripts() {
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("groovy");
// 预编译常用脚本
try {
engine.eval("def sampleScript(execution) { /* 脚本内容 */ }");
} catch (ScriptException e) {
// 处理异常
}
}
4. 升级Flowable版本
考虑升级到Flowable的最新稳定版本,因为后续版本可能已经优化了脚本引擎的处理机制。
性能优化建议
除了解决特定的脚本延迟问题外,对于使用Flowable引擎的系统,还可以考虑以下通用性能优化措施:
- 批量操作:对于大批量流程操作,使用批量API而非单条处理
- 异步执行:将非关键路径的任务配置为异步执行
- 合理设计流程:避免在关键路径上放置复杂的脚本逻辑
- 监控与调优:建立流程执行监控机制,及时发现性能瓶颈
总结
Flowable引擎中脚本任务的执行延迟问题主要源于脚本引擎的解析和编译开销。通过将脚本任务改造为服务任务是最直接有效的解决方案。对于必须使用脚本任务的场景,可以通过配置缓存、预编译脚本等方法来优化性能。在实际项目中,应根据具体业务需求和技术环境选择最适合的优化方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92