AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.13版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,帮助开发者快速部署AI工作负载。近日,该项目发布了针对ARM64架构的PyTorch推理镜像v1.13版本,支持在EC2实例上运行PyTorch 2.6.0的推理任务。
镜像版本概览
本次发布的DLC镜像包含两个主要变体,分别针对不同计算需求:
-
CPU版本镜像:基于Ubuntu 22.04系统,预装PyTorch 2.6.0 CPU版本,支持Python 3.12环境。该镜像适用于不需要GPU加速的推理场景,特别适合成本敏感型应用。
-
GPU版本镜像:同样基于Ubuntu 22.04系统,预装PyTorch 2.6.0 CUDA 12.4版本,支持Python 3.12环境。该镜像针对NVIDIA GPU进行了优化,适合需要高性能推理的应用场景。
关键技术特性
1. 软件栈深度集成
两个镜像都深度集成了PyTorch生态系统的关键组件:
- 核心框架:PyTorch 2.6.0
- 配套工具:TorchServe 0.12.0(模型服务框架)、TorchModelArchiver 0.12.0(模型打包工具)
- 扩展库:TorchVision 0.21.0(计算机视觉)、TorchAudio 2.6.0(音频处理)
2. 优化的依赖管理
镜像中预装了经过严格测试的依赖库版本,确保系统稳定性:
- 科学计算:NumPy 2.2.3、SciPy 1.15.2
- 图像处理:OpenCV 4.11.0.86、Pillow 11.1.0
- 开发工具:Cython 3.0.12、Ninja 1.11.1.1
- AWS集成:boto3 1.37.8、awscli 1.38.8
3. ARM64架构优化
作为专为ARM64架构设计的镜像,它们充分利用了基于ARM的EC2实例(如Graviton系列)的计算优势:
- 针对ARM指令集优化的PyTorch二进制包
- 兼容ARM64的系统库(如libgcc-11-dev、libstdc++6等)
- 针对不同计算需求的CUDA支持(GPU版本)
应用场景建议
-
边缘计算部署:ARM架构的低功耗特性使其非常适合边缘设备上的模型推理,这些镜像为边缘AI提供了标准化的运行环境。
-
成本优化型推理服务:在不需要GPU加速的场景下,使用ARM架构的EC2实例配合CPU版本镜像可以显著降低推理成本。
-
大规模模型服务:GPU版本镜像结合ARM架构的并行计算能力,适合部署需要高性能推理的大规模模型。
版本兼容性说明
开发者需要注意以下兼容性要点:
- Python版本锁定为3.12,确保使用匹配的客户端代码
- CUDA 12.4要求对应的NVIDIA驱动版本
- 系统级依赖基于Ubuntu 22.04,与其他Linux发行版可能存在差异
AWS Deep Learning Containers的这些新版本为ARM64架构上的PyTorch推理工作负载提供了开箱即用的解决方案,简化了从开发到部署的整个流程,是构建高效AI服务的理想选择。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









