Quivr项目中聊天LLM模块的代码重构实践
2025-05-03 05:06:49作者:胡易黎Nicole
在Quivr项目的后端架构中,聊天LLM功能模块存在明显的代码重复问题。本文将深入分析这一问题,并提出基于工作流配置的优雅解决方案。
问题背景分析
Quivr的后端系统在处理聊天LLM功能时,存在两个高度相似的实现:
backend/core/quivr_core/chat_llm.py中的核心实现backend/api/quivr_api/modules/chat_llm_service/chat_llm_service.py中的服务层实现
这两个模块都重复实现了brain.py和rag_service.py中的核心逻辑。这种重复不仅增加了维护成本,还可能导致功能不一致的问题。
技术现状剖析
当前架构中,聊天LLM的处理流程主要包括两个关键步骤:
- 历史对话过滤(filter_history)
- 响应生成(generate)
这些步骤实际上与大脑(Brain)和RAG(Retrieval-Augmented Generation)服务的核心功能高度重叠。重复实现这些逻辑违反了DRY(Don't Repeat Yourself)原则。
解决方案设计
基于Quivr项目新引入的工作流引擎和YAML配置系统,我们可以采用更优雅的解决方案:
- 动态工作流构建:在运行时创建专门用于聊天LLM的轻量级工作流
- 最小化流程配置:该工作流只需包含filter_history和generate两个必要步骤
- 配置驱动开发:通过YAML文件定义工作流,实现业务逻辑的可配置化
实现方案详解
工作流配置示例
chat_llm_workflow:
steps:
- name: filter_history
module: core.history_processor
params:
max_turns: 5
- name: generate
module: core.llm_generator
params:
model: gpt-4
temperature: 0.7
架构优化点
- 去重核心逻辑:将重复的brain和RAG逻辑统一到核心模块
- 轻量级服务层:聊天LLM服务只需负责工作流编排和结果返回
- 配置灵活性:不同场景的工作流可通过配置调整,无需修改代码
预期收益
- 代码可维护性提升:消除重复代码,减少维护成本
- 架构清晰度提高:各层职责更加明确
- 扩展性增强:新功能可通过配置快速实现
- 一致性保证:所有LLM调用使用相同的核心逻辑
实施建议
- 渐进式重构:先在新功能中使用工作流模式,逐步迁移旧代码
- 测试保障:建立完善的工作流测试用例
- 文档补充:详细记录工作流配置语法和使用规范
这种基于工作流的架构改造,不仅解决了当前的代码重复问题,还为Quivr项目的长期演进奠定了更坚实的基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896