Quivr项目中聊天LLM模块的代码重构实践
2025-05-03 05:47:43作者:胡易黎Nicole
在Quivr项目的后端架构中,聊天LLM功能模块存在明显的代码重复问题。本文将深入分析这一问题,并提出基于工作流配置的优雅解决方案。
问题背景分析
Quivr的后端系统在处理聊天LLM功能时,存在两个高度相似的实现:
backend/core/quivr_core/chat_llm.py中的核心实现backend/api/quivr_api/modules/chat_llm_service/chat_llm_service.py中的服务层实现
这两个模块都重复实现了brain.py和rag_service.py中的核心逻辑。这种重复不仅增加了维护成本,还可能导致功能不一致的问题。
技术现状剖析
当前架构中,聊天LLM的处理流程主要包括两个关键步骤:
- 历史对话过滤(filter_history)
- 响应生成(generate)
这些步骤实际上与大脑(Brain)和RAG(Retrieval-Augmented Generation)服务的核心功能高度重叠。重复实现这些逻辑违反了DRY(Don't Repeat Yourself)原则。
解决方案设计
基于Quivr项目新引入的工作流引擎和YAML配置系统,我们可以采用更优雅的解决方案:
- 动态工作流构建:在运行时创建专门用于聊天LLM的轻量级工作流
- 最小化流程配置:该工作流只需包含filter_history和generate两个必要步骤
- 配置驱动开发:通过YAML文件定义工作流,实现业务逻辑的可配置化
实现方案详解
工作流配置示例
chat_llm_workflow:
steps:
- name: filter_history
module: core.history_processor
params:
max_turns: 5
- name: generate
module: core.llm_generator
params:
model: gpt-4
temperature: 0.7
架构优化点
- 去重核心逻辑:将重复的brain和RAG逻辑统一到核心模块
- 轻量级服务层:聊天LLM服务只需负责工作流编排和结果返回
- 配置灵活性:不同场景的工作流可通过配置调整,无需修改代码
预期收益
- 代码可维护性提升:消除重复代码,减少维护成本
- 架构清晰度提高:各层职责更加明确
- 扩展性增强:新功能可通过配置快速实现
- 一致性保证:所有LLM调用使用相同的核心逻辑
实施建议
- 渐进式重构:先在新功能中使用工作流模式,逐步迁移旧代码
- 测试保障:建立完善的工作流测试用例
- 文档补充:详细记录工作流配置语法和使用规范
这种基于工作流的架构改造,不仅解决了当前的代码重复问题,还为Quivr项目的长期演进奠定了更坚实的基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219