Quivr项目中聊天LLM模块的代码重构实践
2025-05-03 13:26:40作者:胡易黎Nicole
在Quivr项目的后端架构中,聊天LLM功能模块存在明显的代码重复问题。本文将深入分析这一问题,并提出基于工作流配置的优雅解决方案。
问题背景分析
Quivr的后端系统在处理聊天LLM功能时,存在两个高度相似的实现:
backend/core/quivr_core/chat_llm.py
中的核心实现backend/api/quivr_api/modules/chat_llm_service/chat_llm_service.py
中的服务层实现
这两个模块都重复实现了brain.py
和rag_service.py
中的核心逻辑。这种重复不仅增加了维护成本,还可能导致功能不一致的问题。
技术现状剖析
当前架构中,聊天LLM的处理流程主要包括两个关键步骤:
- 历史对话过滤(filter_history)
- 响应生成(generate)
这些步骤实际上与大脑(Brain)和RAG(Retrieval-Augmented Generation)服务的核心功能高度重叠。重复实现这些逻辑违反了DRY(Don't Repeat Yourself)原则。
解决方案设计
基于Quivr项目新引入的工作流引擎和YAML配置系统,我们可以采用更优雅的解决方案:
- 动态工作流构建:在运行时创建专门用于聊天LLM的轻量级工作流
- 最小化流程配置:该工作流只需包含filter_history和generate两个必要步骤
- 配置驱动开发:通过YAML文件定义工作流,实现业务逻辑的可配置化
实现方案详解
工作流配置示例
chat_llm_workflow:
steps:
- name: filter_history
module: core.history_processor
params:
max_turns: 5
- name: generate
module: core.llm_generator
params:
model: gpt-4
temperature: 0.7
架构优化点
- 去重核心逻辑:将重复的brain和RAG逻辑统一到核心模块
- 轻量级服务层:聊天LLM服务只需负责工作流编排和结果返回
- 配置灵活性:不同场景的工作流可通过配置调整,无需修改代码
预期收益
- 代码可维护性提升:消除重复代码,减少维护成本
- 架构清晰度提高:各层职责更加明确
- 扩展性增强:新功能可通过配置快速实现
- 一致性保证:所有LLM调用使用相同的核心逻辑
实施建议
- 渐进式重构:先在新功能中使用工作流模式,逐步迁移旧代码
- 测试保障:建立完善的工作流测试用例
- 文档补充:详细记录工作流配置语法和使用规范
这种基于工作流的架构改造,不仅解决了当前的代码重复问题,还为Quivr项目的长期演进奠定了更坚实的基础。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133