Wagmi v2中useWalletClient和useConnectorClient的性能优化问题解析
2025-06-03 23:04:30作者:昌雅子Ethen
问题背景
在Wagmi v2的使用过程中,开发者发现useWalletClient和useConnectorClient这两个钩子函数会导致过多的重新渲染,严重影响应用性能。经过深入分析,发现问题源于这些钩子内部实现中的查询失效逻辑。
核心问题分析
这两个钩子函数内部都包含一个useEffect,其逻辑如下:
useEffect(() => {
// 当地址变化时使查询失效
if (address) queryClient.invalidateQueries({ queryKey })
else queryClient.removeQueries({ queryKey }) // 当账户断开连接时移除查询
}, [address, queryClient])
这段代码看似合理,但实际上存在一个关键问题:每当组件首次挂载时,这个效果都会运行,导致查询被不必要地无效化。这意味着:
- 每次包含这些钩子的组件挂载时,都会触发查询无效化
- 这会导致连锁反应,触发其他监听器/效果/订阅
- 最终会调用
createClient并生成新的uuid() - 这种模式很容易陷入性能陷阱
解决方案探讨
经过社区讨论,提出了几种改进方案:
方案一:使用ref跟踪地址变化
const prevAddress = useRef<UseAccountReturnType<config>["address"]>(address)
useEffect(() => {
if (!address) {
queryClient.removeQueries({ queryKey })
} else if (address !== prevAddress.current) {
queryClient.invalidateQueries({ queryKey })
}
prevAddress.current = address
}, [address, queryClient])
方案二:优化后的ref方案
const addressRef = useRef<Address | null | undefined>(null)
useEffect(() => {
if (addressRef.current === null || addressRef.current === address) return
if (address) queryClient.invalidateQueries({ queryKey })
else queryClient.removeQueries({ queryKey })
addressRef.current = address
}, [address])
技术实现要点
- 首次渲染处理:通过ref初始值为null来区分首次渲染和后续更新
- 变化检测:只有当地址实际发生变化时才执行查询操作
- 性能优化:避免了不必要的查询无效化和重新渲染
最佳实践建议
- 在使用这些钩子时,应注意其可能带来的性能影响
- 对于频繁更新的组件,考虑使用ref方案优化
- 在复杂应用中,可能需要考虑全局状态管理来减少重复查询
总结
Wagmi v2中的useWalletClient和useConnectorClient钩子函数在默认实现中存在性能隐患,通过引入ref来跟踪状态变化可以有效解决这个问题。这种优化模式不仅适用于Wagmi,也可以应用于其他需要精细控制副作用的React钩子场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134