ROCm 6.3.2安装指南:解决Secure Boot导致amdgpu驱动加载失败问题
在Linux系统上安装AMD ROCm计算平台时,许多用户可能会遇到一个常见但容易被忽视的问题——Secure Boot安全启动机制导致amdgpu显卡驱动无法正常加载。本文将深入分析这一问题的成因,并提供详细的解决方案。
问题现象
当用户在启用了Secure Boot的系统中安装ROCm 6.3.2后,可能会观察到以下异常现象:
- 安装过程看似顺利完成,没有报错
- 首次安装后可以正常加载amdgpu模块
- 系统重启后,amdgpu驱动无法加载
- ROCm工具如rocminfo和clinfo显示显卡未被识别
- 系统日志中可能出现驱动签名验证失败的提示
根本原因分析
Secure Boot是UEFI固件提供的一项安全功能,它要求所有内核模块必须经过数字签名验证才能加载。AMD显卡驱动(amdgpu)作为内核模块,同样受此机制约束。
在ROCm安装过程中,安装程序会通过DKMS(动态内核模块支持)机制编译并安装amdgpu驱动模块。如果系统启用了Secure Boot,新编译的驱动模块将无法通过签名验证,导致加载失败。
解决方案
针对此问题,我们有两种解决方案:
方案一:禁用Secure Boot(简单但不推荐)
- 重启系统并进入BIOS/UEFI设置界面
- 找到"Secure Boot"选项(通常在Security或Boot选项卡下)
- 将其设置为"Disabled"
- 保存设置并退出
- 系统重启后,重新安装ROCm驱动
注意:此方法虽然简单,但会降低系统安全性,不建议生产环境使用。
方案二:为驱动添加MOK签名(推荐)
-
安装ROCm前确保系统已安装
mokutil工具:sudo apt install mokutil -
正常进行ROCm安装流程
-
安装过程中会自动生成Machine Owner Key(MOK)并签名驱动
-
安装完成后,系统会提示需要注册MOK密钥
-
重启系统,在UEFI界面选择"Enroll MOK"
-
按照屏幕提示完成密钥注册
-
继续正常启动系统
-
验证驱动加载状态:
lsmod | grep amdgpu
技术原理详解
Secure Boot的工作原理是验证每个内核模块的数字签名。当使用DKMS编译驱动时,会生成未签名的内核模块。AMD安装程序会自动处理签名过程:
- 检测Secure Boot状态
- 生成新的RSA密钥对(如果不存在)
- 使用私钥对驱动模块进行签名
- 将公钥导出为MOK格式
- 提示用户将MOK注册到UEFI固件
注册后的MOK会被UEFI固件信任,从而允许加载由对应私钥签名的驱动模块。
最佳实践建议
- 生产环境中建议使用MOK签名方案而非禁用Secure Boot
- 备份MOK密钥(通常位于/etc/ssl/mok/)
- 在多系统环境中,可将同一MOK密钥用于所有系统
- 定期更新密钥(建议每年一次)
- 企业环境中可使用统一的企业CA签名驱动
故障排查技巧
如果按照上述步骤操作后问题仍然存在,可以尝试以下排查方法:
-
检查Secure Boot状态:
sudo mokutil --sb-state -
验证驱动签名:
modinfo amdgpu | grep signature -
查看内核日志中的错误信息:
sudo dmesg | grep amdgpu -
确认DKMS构建状态:
sudo dkms status
通过理解Secure Boot机制与ROCm驱动的交互原理,用户可以更顺利地完成安装过程,同时保持系统的安全特性。AMD官方文档已更新相关内容,帮助用户避免此类安装问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00