Snarkjs多线程计算中的核心数限制问题分析
2025-07-07 09:43:01作者:何举烈Damon
背景介绍
在区块链和零知识证明领域,snarkjs是一个广泛使用的JavaScript库,用于执行复杂的密码学计算。其中,powersoftau prepare phase2命令用于准备可信设置的第二阶段,这是一个计算密集型任务,特别是在处理大规模参数(如2^28)时,可能需要数小时甚至数天的计算时间。
问题现象
用户在使用AWS EC2 c7a.48xlarge实例(192个vCPU)运行snarkjs时,发现计算过程仅使用了64个核心,而非全部192个核心。通过系统监控工具top观察到进程的CPU使用率约为6400%,证实了64个线程正在运行。
技术分析
核心数检测机制
Node.js提供了两种检测系统CPU核心数的方法:
os.cpus().length- 返回系统识别的CPU核心总数os.availableParallelism()- Node.js推荐的新方法,考虑容器限制等因素
在测试环境中,两种方法都正确返回了192个核心,表明问题不在核心检测环节。
底层库限制
进一步调查发现,snarkjs依赖的底层库ffjavascript出于内存考虑,硬编码将并发线程数限制为64。这种限制在大多数情况下是合理的,因为:
- 内存消耗随线程数线性增长,过多线程可能导致内存不足
- 计算任务并非完全CPU密集型,还涉及大量I/O操作
- 超过一定线程数后,性能提升可能不明显甚至下降
性能权衡
用户进行了对比测试,发现:
- 在192核实例上移除64线程限制后,计算可以顺利完成
- 但整体性能提升有限,因为:
- 计算过程约50%是CPU密集型
- 另外50%是I/O密集型(读写操作)
- 从成本效益角度,使用64核实例更为经济
工程建议
-
动态线程限制:理想情况下,线程限制应可通过命令行参数调整,让用户根据具体硬件配置和任务需求灵活设置
-
自动资源评估:可以开发更智能的资源分配策略,考虑:
- 可用内存大小
- 存储I/O性能
- CPU缓存效应
-
性能监控:添加运行时性能指标收集,帮助用户找到最优配置
实践指导
对于需要运行大规模snarkjs计算的用户,建议:
- 对于非紧急任务,使用64核实例更具成本效益
- 若追求最快完成时间,可使用更多核心的实例并修改线程限制
- 监控系统资源使用情况,避免内存不足导致进程终止
- 考虑计算过程中的I/O瓶颈,选择具有高性能存储的实例类型
通过深入理解这些性能特征,用户可以更有效地规划和执行零知识证明相关的计算任务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258