Spiceweasel 技术文档
1. 安装指南
Spiceweasel 是一个用于批量加载 Chef 基础设施的命令行工具。它依赖于 knife 命令和 chef gem,并且需要安装 Berkshelf 来支持 Cookbook 的 Berksfile。
安装步骤
-
安装 Ruby:确保系统上安装了 Ruby 1.9.3 或更高版本。如果使用 Ruby 2.0,需要安装 Chef 11.6 或更高版本的 gem。
-
安装 Chef:通过以下命令安装 Chef gem:
gem install chef -
安装 Berkshelf:通过以下命令安装 Berkshelf:
gem install berkshelf -
安装 Spiceweasel:通过以下命令安装 Spiceweasel:
gem install spiceweasel
2. 项目的使用说明
Spiceweasel 通过一个简单的 Ruby、JSON 或 YAML 文件来描述和部署 Chef 基础设施。该文件可以与 Chef 仓库捆绑在一起,以部署仓库中包含的基础设施,并验证列出的组件是否都存在。
文件语法
Spiceweasel 文件可以是 Ruby、JSON 或 YAML 格式,描述了要实例化的 Chef 基础设施。以下是 YAML 格式的示例:
cookbooks:
- apache2:
- apt:
version: 1.2.0
options: --freeze
- mysql:
- ntp:
该文件将生成以下 knife 命令:
knife cookbook upload apache2
knife cookbook site download apt 1.2.0 --file cookbooks/apt.tgz
tar -C cookbooks/ -xf cookbooks/apt.tgz
rm -f cookbooks/apt.tgz
knife cookbook upload apt --freeze
knife cookbook upload mysql ntp
3. 项目 API 使用文档
Spiceweasel 提供了多个 API 来管理 Chef 基础设施的不同部分,包括 Cookbooks、Environments、Roles、Data Bags 和 Nodes。
Cookbooks
cookbooks 部分支持 knife cookbook upload 命令,用于上传 Cookbook。可以通过 version 和 options 指定版本和选项。
Environments
environments 部分支持 knife environment from file 命令,用于加载环境文件。可以使用通配符加载多个环境。
Roles
roles 部分支持 knife role from file 命令,用于加载角色文件。可以使用通配符加载多个角色。
Data Bags
data bags 部分支持 knife data bag create 和 knife data bag from file 命令,用于创建和加载数据包。支持加密数据包。
Nodes
nodes 部分支持 knife bootstrap 命令,用于引导节点。可以为节点指定 run_list 和 options,并支持批量创建节点。
4. 项目安装方式
Spiceweasel 可以通过 RubyGems 安装,也可以通过源码安装。
通过 RubyGems 安装
gem install spiceweasel
通过源码安装
-
克隆 Spiceweasel 仓库:
git clone https://github.com/mattray/spiceweasel.git -
进入项目目录并安装依赖:
cd spiceweasel bundle install -
安装 Spiceweasel:
rake install
通过以上步骤,您可以成功安装并使用 Spiceweasel 来管理您的 Chef 基础设施。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00