Stable Diffusion WebUI Forge 在 M1/M2 Mac 上的 Flux 模式问题分析与解决方案
问题背景
Stable Diffusion WebUI Forge 是一个基于 Stable Diffusion 的增强版 WebUI,提供了更多高级功能和优化。其中 Flux 模式是一种创新的图像生成方式,但在 Apple Silicon(M1/M2/M3 系列)Mac 设备上运行时,用户普遍遇到了兼容性问题。
典型错误表现
在 M1/M2 Mac 设备上使用 Flux 模式时,主要会出现以下几种错误:
- 
线性层维度不匹配错误
RuntimeError: linear(): input and weight.T shapes cannot be multiplied (4032x64 and 1x98304)这表明模型中的线性层输入与权重矩阵的维度不兼容。
 - 
数据类型不支持错误
TypeError: Cannot convert a MPS Tensor to float64 dtype as the MPS framework doesn't support float64. Please use float32 instead.MPS(Metal Performance Shaders)后端不支持 float64 数据类型。
 - 
运算符未实现错误
NotImplementedError: The operator 'aten::__rshift__.Scalar' is not currently implemented for the MPS device某些 PyTorch 运算符在 MPS 后端尚未实现。
 
根本原因分析
这些问题主要源于以下几个技术因素:
- 
MPS 后端的限制:Apple 的 Metal Performance Shaders 虽然为 Mac 提供了 GPU 加速支持,但与 CUDA 相比功能尚不完善,特别是:
- 不支持 float64 数据类型
 - 缺少某些特定运算符的实现
 - 对新型模型架构的支持有限
 
 - 
模型量化问题:Flux 模型的不同量化版本(如 NF4、FP8、FP16)在 MPS 上的兼容性差异很大。
 - 
PyTorch 版本兼容性:不同版本的 PyTorch 对 MPS 的支持程度不同,可能导致某些功能在不同版本中表现不一致。
 
解决方案
经过社区验证,以下解决方案可以有效解决 M1/M2 Mac 上的 Flux 模式问题:
1. 使用正确的模型组合
推荐使用以下模型组合:
- 主模型:flux1-dev.safetensors 或 flux1-schnell.safetensors
 - T5 文本编码器:t5xxl_fp16.safetensors
 
避免使用 NF4 量化版本的模型,因为这些版本通常需要 bitsandbytes 库的支持,而该库在 Mac 上的兼容性不佳。
2. 启用 MPS 回退到 CPU 的机制
在项目的 main.py 文件开头添加以下代码:
import os
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
这允许 PyTorch 在遇到 MPS 不支持的运算时自动回退到 CPU 执行,虽然速度会有所下降,但能保证功能正常。
3. 更新 PyTorch 和相关依赖
执行以下命令确保使用最新版本的 PyTorch:
pip install --upgrade torch torchvision torchaudio
4. 使用社区修改版的 flux.py
从社区获取经过修改的 flux.py 文件替换原有版本,这些修改通常包含了对 MPS 后端的特定适配。
性能优化建议
虽然上述解决方案可以解决问题,但在 Mac 上运行 Flux 模式仍需注意性能优化:
- 适当降低分辨率:从 1024x1024 降至 768x768 或更低
 - 减少采样步数:尝试 20-30 步而非默认的 50 步
 - 使用轻量级模型:如 flux1-schnell 而非 flux1-dev
 - 关闭不必要的后台应用以释放内存
 
替代方案
对于追求更好 Mac 兼容性的用户,可以考虑以下替代方案:
- 使用专门为 Mac 优化的 Stable Diffusion 客户端,如 DrawThings
 - 考虑使用云服务运行资源密集型任务
 - 等待 PyTorch 对 MPS 后端的进一步改进
 
结论
虽然 Stable Diffusion WebUI Forge 的 Flux 模式在 Apple Silicon Mac 上存在兼容性问题,但通过正确的模型选择、环境配置和代码修改,仍然可以实现基本功能。随着 PyTorch 对 MPS 后端支持的不断完善,这些问题有望在未来得到更好的解决。建议用户关注 PyTorch 和 WebUI Forge 的更新日志,及时获取最新的兼容性改进。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00