Modelscope/Agentscope项目中Pydantic模型解析的优化方案
2025-05-30 21:21:01作者:温玫谨Lighthearted
在Modelscope/Agentscope项目的开发过程中,我们遇到了一个关于Pydantic模型解析的重要技术问题。这个问题涉及到如何正确处理嵌套数据结构,对于保证项目的稳定性和扩展性具有重要意义。
问题背景
在MarkdownJsonDictParser类的parse方法中,开发团队原本使用dict(self.pydantic_class(**response.parsed))的方式将Pydantic模型转换为字典。这种方法在简单数据结构下工作良好,但当处理嵌套数据结构时就会出现问题。
问题分析
通过深入分析,我们发现这种转换方式存在以下技术缺陷:
- 对于嵌套模型,dict()转换只会处理最外层,内层仍然保留Pydantic模型实例
- 当尝试序列化这种结构时(如使用json.dumps),会抛出"Object is not JSON serializable"异常
- 这种实现限制了数据结构的复杂性,不利于项目未来的扩展
技术验证
我们通过以下代码验证了这个问题:
from pydantic import BaseModel, Field
class InsideSchema(BaseModel):
key: str = Field("value", description="key")
class NestedStructure(BaseModel):
object: InsideSchema = Field(default_factory=InsideSchema, description="object")
data = NestedStructure()
print(data.model_dump()) # 正确输出: {'object': {'key': 'value'}}
print(dict(data)) # 问题输出: {'object': InsideSchema(key='value')}
解决方案
经过技术评估,我们推荐使用Pydantic提供的model_dump()方法替代dict()转换。这种方法具有以下优势:
- 能够正确处理嵌套数据结构,递归地将所有层级转换为字典
- 与JSON序列化完全兼容
- 是Pydantic官方推荐的方式,保证未来兼容性
修改后的代码应如下所示:
response.parsed = self.pydantic_class(**response.parsed).model_dump()
实施建议
对于使用Modelscope/Agentscope的开发者,我们建议:
- 在处理复杂数据结构时,始终使用model_dump()而非dict()
- 对于需要JSON序列化的场景,model_dump()能确保数据可序列化
- 在自定义解析器时,考虑数据结构的嵌套可能性
总结
这个优化不仅解决了当前的技术问题,还为项目未来的发展奠定了基础。通过采用Pydantic官方推荐的方式,我们确保了代码的规范性和可维护性,同时也为处理更复杂的数据结构做好了准备。这种改进体现了对项目质量的高度重视和对技术细节的严谨态度。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217