Seurat v5中SCTransform(v2)与数据整合的最佳实践
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的工具包。随着Seurat v5的发布,数据预处理和整合流程有了显著改进,特别是与SCTransform(v2)的结合使用。本文将详细介绍如何在Seurat v5环境下正确使用SCTransform(v2)进行数据整合和差异表达分析。
SCTransform与数据整合流程
在Seurat v5中,数据整合流程得到了简化。传统上,使用SCTransform进行数据预处理后,整合需要多个步骤:
- 选择整合特征(SelectIntegrationFeatures)
- 准备SCTransform整合(PrepSCTIntegration)
- 寻找整合锚点(FindIntegrationAnchors)
- 整合数据(IntegrateData)
而在Seurat v5中,这些步骤可以被单个函数IntegrateLayers替代。当使用SCTransform(v2)进行归一化时,只需在IntegrateLayers函数中指定normalization.method = "SCT"参数即可完成整个整合流程。这种简化不仅提高了工作效率,也减少了出错的可能性。
差异表达分析的最佳实践
在完成数据整合后,进行差异表达分析(如寻找标记基因)时,需要特别注意预处理步骤。使用SCTransform后,正确的流程应该是:
- 首先运行
PrepSCTFindMarkers函数 - 然后使用
FindAllMarkers进行差异表达分析
这一步骤至关重要,因为SCTransform产生的数据需要特殊的处理才能用于差异表达分析。PrepSCTFindMarkers函数会准备适当的数据结构,确保后续的标记基因识别能够正确进行。
技术细节与注意事项
-
SCTransform版本:确保使用的是v2版本的SCTransform,这可以通过设置参数
vst.flavor = "v2"来实现。 -
数据规模:对于大型数据集,整合过程可能需要较多计算资源,可以考虑使用Seurat v5的改进功能来优化性能。
-
质量控制:虽然本文主要关注整合和分析流程,但不要忽视前期严格的质量控制步骤。
-
结果验证:建议对整合结果进行可视化检查(如UMAP/tSNE图),确保整合效果符合预期。
总结
Seurat v5通过简化工作流程,特别是引入IntegrateLayers函数,显著提高了使用SCTransform进行数据整合的效率。同时,在进行差异表达分析时,记住先使用PrepSCTFindMarkers预处理数据是关键。这些改进使得单细胞数据分析更加高效和可靠,为研究人员提供了更强大的工具来探索复杂的生物学问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00