GLM-4微调过程中训练数据不生效的问题分析与解决方案
2025-06-03 16:54:23作者:裴麒琰
问题背景
在使用THUDM/GLM-4项目进行模型微调时,开发者可能会遇到一个典型问题:微调过程可以正常完成,但训练后的模型在实际应用中似乎没有学习到训练数据中的知识。本文将深入分析这一问题的成因,并提供有效的解决方案。
问题现象
开发者在使用GLM-4-chat-9B模型进行微调时,观察到以下现象:
- 微调过程能够顺利完成,没有报错
- 训练日志显示loss值趋近于0
- 但实际测试时,模型输出与训练数据无关,似乎没有学习到预期内容
根本原因分析
经过技术分析,这个问题主要由以下几个因素导致:
1. 混合精度训练配置问题
项目默认使用了BF16混合精度训练,这在某些硬件环境下可能导致梯度计算异常:
- 只有30系及以上的NVIDIA显卡才完整支持BF16运算
- 低端显卡或某些服务器显卡可能无法正确执行BF16运算
2. 输入长度超限
GLM-4默认配置的输入长度限制为512个token:
- 当训练数据长度超过此限制时会被自动截断
- 如果关键信息被截断,模型无法学习到有效特征
- 特别是当label部分被截断时,模型将无法建立输入输出的关联
3. 数据格式问题
训练数据格式不规范可能导致:
- 输入输出对没有正确对应
- 特殊token使用不当
- 数据预处理阶段信息丢失
解决方案
1. 调整混合精度配置
对于不支持BF16的硬件环境:
- 修改deepspeed配置文件,禁用BF16
- 启用FP16混合精度训练
- 或完全关闭混合精度训练
2. 优化输入长度设置
根据实际数据特点调整配置:
- 在lora.yaml中增加max_input_length和max_output_length
- 确保设置值能覆盖大多数训练样本的长度
- 平衡长度限制与显存消耗
3. 数据预处理检查
确保训练数据质量:
- 验证数据格式是否符合GLM-4要求
- 检查数据是否被正确分词
- 确认输入输出对的对应关系
- 添加必要的特殊token
最佳实践建议
- 硬件适配:确认显卡是否支持BF16,如不确定可先禁用
- 长度监控:训练前统计数据长度分布,合理设置参数
- 验证测试:微调后立即进行小规模测试验证效果
- 日志分析:关注训练过程中的loss曲线变化
- 逐步调优:从小数据集开始验证,再扩展到全量数据
总结
GLM-4微调过程中数据不生效的问题通常源于训练配置与数据特性的不匹配。通过合理调整混合精度设置、优化输入长度限制以及确保数据质量,开发者可以有效解决这一问题。建议在正式训练前进行小规模验证,以快速发现并解决潜在问题。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++026Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
943
556

React Native鸿蒙化仓库
C++
196
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
361
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71