BharatMLStack在线特征存储核心功能解析
2025-06-19 04:04:12作者:明树来
引言
在机器学习工程实践中,特征存储系统扮演着至关重要的角色。BharatMLStack项目中的在线特征存储组件(Online Feature Store)是一个专为生产环境设计的高性能系统,它能够以极低延迟(亚10毫秒P99)处理每秒百万级请求(RPS),有效弥合了离线特征工程与实时模型推理之间的鸿沟。
核心架构设计理念
BharatMLStack在线特征存储采用了多层架构设计,主要包含以下关键组件:
- 高性能API层:提供gRPC和RESTful两种接口形式
- 智能缓存层:实现内存高效的对象池和连接池
- 可扩展存储层:支持多种数据库后端
- 监控告警层:内置完善的指标收集和日志系统
这种分层设计使得系统能够在保证高性能的同时,具备良好的可扩展性和可维护性。
核心功能详解
实时特征服务能力
系统最突出的特点是其超低延迟和高吞吐量特性:
- 亚10毫秒P99延迟:即使在99%的请求情况下,响应时间也能保持在10毫秒以内
- 百万级RPS处理能力:单次请求可处理100个ID的特征查询,系统整体吞吐量可达每秒百万次请求
- 批量检索:支持单次请求获取多个实体的多个特征
- 时间点一致性:确保模型预测时使用的特征数据具有一致性
多格式数据支持
系统针对机器学习场景优化了各种数据类型的存储和序列化:
| 数据类型 | 支持格式 | 典型应用场景 |
|---|---|---|
| 整型 | int8/16/32/64 | 用户ID、计数、类别编码 |
| 浮点型 | float16/32/64 | 连续特征、嵌入向量、分数 |
| 字符串 | 变长 | 类别、文本特征、元数据 |
| 布尔型 | 位压缩 | 特征标志、二元指标 |
| 向量 | 所有上述类型 | 嵌入、特征数组、时间序列 |
多数据库后端支持
系统设计了灵活的存储后端适配层,可根据不同场景需求选择:
- ScyllaDB:基于C++的高性能NoSQL数据库,推荐生产环境使用
- Dragonfly:新一代Redis替代方案,内存效率更高
- Redis:传统内存数据库,适合开发和中小规模部署
关键技术优化
性能优化手段
- 自定义PSDB格式:专为机器学习特征优化的序列化协议
- 对象池技术:高效复用内存资源,减少GC压力
- 连接池管理:优化数据库连接使用效率
- 智能压缩:支持LZ4/Snappy/ZSTD等多种压缩算法,自动选择最优方案
数据管理特性
- TTL支持:可配置的特征自动过期机制
- 版本控制:多版本特征模式并存,保持向后兼容
- 批量操作:高效的批量读写接口
- 特征分组:逻辑上组织相关特征,便于管理
开发者体验
系统提供了完善的开发者工具链:
- 多语言SDK:
- Go语言原生客户端,内置连接池和错误处理
- Python绑定,方便数据科学家使用
- API接口:
- 高性能gRPC接口
- 便于测试的RESTful接口
- 调试工具:
- 特征值解码功能
- 版本感知查询
生产环境就绪特性
- 健康检查:内置健康监测端点
- 监控集成:支持DataDog/Prometheus等监控系统
- 结构化日志:JSON格式日志,可配置级别
- 优雅关闭:完善的资源清理机制
典型应用场景
实时机器学习推理
// 获取推荐模型所需的用户特征
query := &onfs.Query{
EntityLabel: "user",
FeatureGroups: []onfs.FeatureGroup{
{
Label: "demographics",
FeatureLabels: []string{"age", "location", "income"},
},
{
Label: "behavior",
FeatureLabels: []string{"click_rate", "purchase_history"},
},
},
KeysSchema: []string{"user_id"},
Keys: []onfs.Keys{
{Cols: []string{"user_123"}},
},
}
批量特征服务
// 为模型训练批量获取特征
query := &onfs.Query{
EntityLabel: "transaction",
FeatureGroups: []onfs.FeatureGroup{
{
Label: "transaction_history",
FeatureLabels: []string{"amount", "frequency", "merchant_type"},
},
{
Label: "risk_scores",
FeatureLabels: []string{"fraud_score", "credit_score"},
},
},
KeysSchema: []string{"transaction_id"},
Keys: []onfs.Keys{
{Cols: []string{"txn_001"}},
{Cols: []string{"txn_002"}},
// 数百个交易ID
},
}
A/B测试支持
// 版本感知的特征获取
query := &onfs.Query{
EntityLabel: "experiment",
FeatureGroups: []onfs.FeatureGroup{
{
Label: "model_features_v2", // 指定版本
FeatureLabels: []string{"feature_a", "feature_b", "feature_c"},
},
},
KeysSchema: []string{"user_id"},
Keys: []onfs.Keys{
{Cols: []string{"user_123"}},
},
}
生产部署建议
推荐架构
- 负载均衡层:分发流量到多个实例
- 特征存储集群:至少3个实例保证高可用
- 数据库集群:带自动故障转移的复制后端
- 监控栈:指标、日志和告警基础设施
扩展指南
- 水平扩展:增加特征存储实例数量
- 数据库扩展:增加分区或升级硬件
- 缓存预热:预加载高频访问特征
- 连接调优:根据流量模式优化连接池大小
总结
BharatMLStack在线特征存储通过精心设计的技术架构和多项性能优化,为机器学习系统提供了可靠的高性能特征服务能力。无论是实时推理、批量处理还是A/B测试场景,它都能提供稳定、高效的特征访问服务,是现代机器学习基础设施中不可或缺的关键组件。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
642
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
642