MaaFramework中Pipeline任务配置的结构优化探讨
2025-07-06 17:02:47作者:彭桢灵Jeremy
背景介绍
MaaFramework是一个自动化任务执行框架,其中的核心功能之一是通过Pipeline定义任务流程。Pipeline采用JSON格式配置,包含了任务识别(recognition)、执行动作(action)以及流程控制等多个方面的参数设置。随着项目的发展,Pipeline配置结构逐渐显现出一些可优化空间。
当前配置结构分析
目前MaaFramework的Pipeline采用扁平化的JSON结构,所有参数都位于任务节点的第一层级。例如一个典型的任务配置包含:
recognition: 指定识别算法类型roi: 识别区域template: 模板图片路径action: 执行动作类型begin/end: 动作起始和结束坐标- 其他流程控制参数如
next、timeout等
这种结构虽然简单直接,但随着参数增多和复杂任务场景的增加,存在以下问题:
- 可读性差:识别参数和动作参数混杂在一起,难以快速区分
- 维护困难:参数顺序不固定,编辑时容易遗漏或误读
- 扩展性弱:新增参数可能导致结构更加混乱
结构优化方案
针对上述问题,社区提出了将相关参数分组到二级字典的优化方案。具体改进包括:
识别参数分组
将识别相关参数归入recognition字典:
"recognition": {
"algo": "TemplateMatch",
"roi": [0, 0, 0, 0],
"template": "btn.png",
"threshold": 0.7,
"order_by": "Vertical",
"index": 2
}
动作参数分组
将动作相关参数归入action字典:
"action": {
"do": "Swipe",
"begin": [0, 0, 0, 0],
"begin_offset": [0, 0, 0, 0],
"end": [0, 0, 0, 0],
"end_offset": [0, 0, 0, 0],
"duration": 200
}
流程控制参数
保留在顶层:
"next": [],
"is_sub": true,
"timeout": 20000
技术实现考量
在MaaFramework中实现这种结构优化需要考虑以下技术因素:
- 向后兼容性:需要确保现有Pipeline配置仍能正常工作
- 参数覆盖机制:框架支持通过diff对象修改任务参数,新结构需要保持这一功能
- 解析逻辑:需要调整JSON解析逻辑以支持嵌套结构
扩展讨论
在优化结构的基础上,社区还提出了进一步的功能增强建议:
- 任务部分引用:支持引用其他任务的
action或recognition部分,提高复用性 - 识别次数限制:为
recognition添加times_limit参数,避免无限重复识别 - 动作序列:支持定义多个连续动作,如多段滑动操作
实施建议
基于讨论内容,实施Pipeline结构优化可考虑以下步骤:
- 首先实现基础的分组结构,保持核心功能不变
- 逐步添加扩展功能如部分引用和识别限制
- 提供迁移工具帮助用户转换现有Pipeline配置
- 完善文档说明新的配置结构
总结
MaaFramework的Pipeline配置结构优化不仅能提升可读性和可维护性,还为未来功能扩展奠定了基础。通过合理的参数分组和结构化设计,可以使任务配置更加清晰直观,降低使用门槛,同时保持框架的灵活性和强大功能。这一改进将有助于MaaFramework在自动化任务处理领域保持技术领先地位。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
265
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868