MaaFramework中Pipeline任务配置的结构优化探讨
2025-07-06 15:00:02作者:彭桢灵Jeremy
背景介绍
MaaFramework是一个自动化任务执行框架,其中的核心功能之一是通过Pipeline定义任务流程。Pipeline采用JSON格式配置,包含了任务识别(recognition)、执行动作(action)以及流程控制等多个方面的参数设置。随着项目的发展,Pipeline配置结构逐渐显现出一些可优化空间。
当前配置结构分析
目前MaaFramework的Pipeline采用扁平化的JSON结构,所有参数都位于任务节点的第一层级。例如一个典型的任务配置包含:
recognition: 指定识别算法类型roi: 识别区域template: 模板图片路径action: 执行动作类型begin/end: 动作起始和结束坐标- 其他流程控制参数如
next、timeout等
这种结构虽然简单直接,但随着参数增多和复杂任务场景的增加,存在以下问题:
- 可读性差:识别参数和动作参数混杂在一起,难以快速区分
- 维护困难:参数顺序不固定,编辑时容易遗漏或误读
- 扩展性弱:新增参数可能导致结构更加混乱
结构优化方案
针对上述问题,社区提出了将相关参数分组到二级字典的优化方案。具体改进包括:
识别参数分组
将识别相关参数归入recognition字典:
"recognition": {
"algo": "TemplateMatch",
"roi": [0, 0, 0, 0],
"template": "btn.png",
"threshold": 0.7,
"order_by": "Vertical",
"index": 2
}
动作参数分组
将动作相关参数归入action字典:
"action": {
"do": "Swipe",
"begin": [0, 0, 0, 0],
"begin_offset": [0, 0, 0, 0],
"end": [0, 0, 0, 0],
"end_offset": [0, 0, 0, 0],
"duration": 200
}
流程控制参数
保留在顶层:
"next": [],
"is_sub": true,
"timeout": 20000
技术实现考量
在MaaFramework中实现这种结构优化需要考虑以下技术因素:
- 向后兼容性:需要确保现有Pipeline配置仍能正常工作
- 参数覆盖机制:框架支持通过diff对象修改任务参数,新结构需要保持这一功能
- 解析逻辑:需要调整JSON解析逻辑以支持嵌套结构
扩展讨论
在优化结构的基础上,社区还提出了进一步的功能增强建议:
- 任务部分引用:支持引用其他任务的
action或recognition部分,提高复用性 - 识别次数限制:为
recognition添加times_limit参数,避免无限重复识别 - 动作序列:支持定义多个连续动作,如多段滑动操作
实施建议
基于讨论内容,实施Pipeline结构优化可考虑以下步骤:
- 首先实现基础的分组结构,保持核心功能不变
- 逐步添加扩展功能如部分引用和识别限制
- 提供迁移工具帮助用户转换现有Pipeline配置
- 完善文档说明新的配置结构
总结
MaaFramework的Pipeline配置结构优化不仅能提升可读性和可维护性,还为未来功能扩展奠定了基础。通过合理的参数分组和结构化设计,可以使任务配置更加清晰直观,降低使用门槛,同时保持框架的灵活性和强大功能。这一改进将有助于MaaFramework在自动化任务处理领域保持技术领先地位。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26