深入解析HuggingFace Transformers中稀疏张量反向传播的问题
2025-04-26 23:35:51作者:蔡怀权
在深度学习框架PyTorch中,稀疏张量(Sparse Tensor)是一种高效存储和处理稀疏数据的数据结构。然而,当我们在HuggingFace Transformers项目中使用稀疏张量作为标签进行训练时,可能会遇到一个特定的技术难题——aten::_log_softmax_backward_data操作不支持SparseCUDA后端。
问题背景
在自然语言处理任务中,特别是序列标注任务,我们经常会遇到稀疏标签的情况。例如,在命名实体识别或关系抽取任务中,只有少数token会被标记为实体或关系,其余大部分token都是普通文本。这种情况下,使用稀疏张量存储标签可以显著减少内存占用。
问题现象
当开发者尝试在自定义Trainer中使用稀疏张量作为标签时,会遇到以下错误:
NotImplementedError: Could not run 'aten::_log_softmax_backward_data' with arguments from the 'SparseCUDA' backend
这表明PyTorch当前版本(2.5.1)中,log_softmax函数的反向传播操作不支持稀疏张量作为输入。
技术分析
虽然PyTorch官方文档显示其对稀疏张量有较好的支持,但某些特定操作的反向传播实现仍不完整。具体到这个问题:
CrossEntropyLoss内部会调用log_softmax函数- 当标签是稀疏张量时,反向传播需要计算
log_softmax的梯度 - PyTorch当前版本没有为稀疏张量实现这个特定的反向传播操作
解决方案
对于这个问题,开发者可以采取以下几种解决方案:
方案一:自定义稀疏交叉熵损失函数
通过绕过PyTorch内置的CrossEntropyLoss,我们可以实现一个支持稀疏张量的自定义损失函数:
class SparseCrossEntropyLoss(torch.nn.Module):
def __init__(self, reduction='mean'):
super(SparseCrossEntropyLoss, self).__init__()
self.reduction = reduction
def forward(self, logits, sparse_target):
indices = sparse_target._indices()
values = sparse_target._values()
log_probs = F.log_softmax(logits, dim=-1)
selected_log_probs = log_probs[indices[0], indices[1]]
weighted_loss = -selected_log_probs * values
if self.reduction == 'sum':
return weighted_loss.sum()
elif self.reduction == 'mean':
return weighted_loss.sum() / logits.size()[0]
else:
return weighted_loss
这个实现的关键点在于:
- 直接从稀疏张量中提取非零元素的索引和值
- 只计算这些非零位置对应的log概率
- 根据reduction参数决定如何聚合这些损失值
方案二:转换为密集张量
如果内存允许,可以将稀疏标签转换为密集张量后再使用标准CrossEntropyLoss:
dense_labels = labels.to_dense()
loss = ce_loss(model_logits, dense_labels)
最佳实践建议
- 性能考量:在标签非常稀疏的情况下(非零元素比例<5%),自定义稀疏损失函数通常更高效
- 内存考量:当标签稀疏度不高时,转换为密集张量可能更简单且不会显著增加内存负担
- 兼容性:自定义实现可以更好地控制计算过程,避免框架限制
总结
在HuggingFace Transformers项目中使用稀疏张量作为标签时,开发者需要注意PyTorch对稀疏操作支持的限制。通过理解问题本质并采用适当的解决方案,我们可以既享受稀疏数据结构带来的内存优势,又顺利完成模型训练任务。自定义损失函数虽然需要额外工作,但提供了最大的灵活性和控制力,是处理此类问题的可靠方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76