深入解析HuggingFace Transformers中稀疏张量反向传播的问题
2025-04-26 00:54:36作者:蔡怀权
在深度学习框架PyTorch中,稀疏张量(Sparse Tensor)是一种高效存储和处理稀疏数据的数据结构。然而,当我们在HuggingFace Transformers项目中使用稀疏张量作为标签进行训练时,可能会遇到一个特定的技术难题——aten::_log_softmax_backward_data
操作不支持SparseCUDA后端。
问题背景
在自然语言处理任务中,特别是序列标注任务,我们经常会遇到稀疏标签的情况。例如,在命名实体识别或关系抽取任务中,只有少数token会被标记为实体或关系,其余大部分token都是普通文本。这种情况下,使用稀疏张量存储标签可以显著减少内存占用。
问题现象
当开发者尝试在自定义Trainer中使用稀疏张量作为标签时,会遇到以下错误:
NotImplementedError: Could not run 'aten::_log_softmax_backward_data' with arguments from the 'SparseCUDA' backend
这表明PyTorch当前版本(2.5.1)中,log_softmax
函数的反向传播操作不支持稀疏张量作为输入。
技术分析
虽然PyTorch官方文档显示其对稀疏张量有较好的支持,但某些特定操作的反向传播实现仍不完整。具体到这个问题:
CrossEntropyLoss
内部会调用log_softmax
函数- 当标签是稀疏张量时,反向传播需要计算
log_softmax
的梯度 - PyTorch当前版本没有为稀疏张量实现这个特定的反向传播操作
解决方案
对于这个问题,开发者可以采取以下几种解决方案:
方案一:自定义稀疏交叉熵损失函数
通过绕过PyTorch内置的CrossEntropyLoss
,我们可以实现一个支持稀疏张量的自定义损失函数:
class SparseCrossEntropyLoss(torch.nn.Module):
def __init__(self, reduction='mean'):
super(SparseCrossEntropyLoss, self).__init__()
self.reduction = reduction
def forward(self, logits, sparse_target):
indices = sparse_target._indices()
values = sparse_target._values()
log_probs = F.log_softmax(logits, dim=-1)
selected_log_probs = log_probs[indices[0], indices[1]]
weighted_loss = -selected_log_probs * values
if self.reduction == 'sum':
return weighted_loss.sum()
elif self.reduction == 'mean':
return weighted_loss.sum() / logits.size()[0]
else:
return weighted_loss
这个实现的关键点在于:
- 直接从稀疏张量中提取非零元素的索引和值
- 只计算这些非零位置对应的log概率
- 根据reduction参数决定如何聚合这些损失值
方案二:转换为密集张量
如果内存允许,可以将稀疏标签转换为密集张量后再使用标准CrossEntropyLoss
:
dense_labels = labels.to_dense()
loss = ce_loss(model_logits, dense_labels)
最佳实践建议
- 性能考量:在标签非常稀疏的情况下(非零元素比例<5%),自定义稀疏损失函数通常更高效
- 内存考量:当标签稀疏度不高时,转换为密集张量可能更简单且不会显著增加内存负担
- 兼容性:自定义实现可以更好地控制计算过程,避免框架限制
总结
在HuggingFace Transformers项目中使用稀疏张量作为标签时,开发者需要注意PyTorch对稀疏操作支持的限制。通过理解问题本质并采用适当的解决方案,我们可以既享受稀疏数据结构带来的内存优势,又顺利完成模型训练任务。自定义损失函数虽然需要额外工作,但提供了最大的灵活性和控制力,是处理此类问题的可靠方案。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197