This Not That (TNT) 项目安装指南
2025-06-05 15:53:55作者:姚月梅Lane
项目简介
This Not That (TNT) 是一个基于 Panel 库构建的数据可视化工具,专注于数据地图的探索和分析。它为用户提供了一种直观的方式来交互式地探索高维数据,特别适合数据科学家和研究人员使用。
系统要求
在安装 TNT 之前,请确保您的系统满足以下基本要求:
- Python 3.7 或更高版本
- 稳定的互联网连接(用于下载依赖包)
- 足够的磁盘空间(建议至少 500MB 可用空间)
核心依赖
TNT 的核心功能依赖于以下 Python 包:
-
Panel 库:作为 TNT 的基础框架,Panel 提供了交互式仪表板的构建能力
- 包含 Bokeh(用于交互式可视化)
- 包含 Param(用于参数管理)
-
数据处理与分析:
- NumPy (>=1.22):基础数值计算
- pandas:数据框操作
- scikit-learn:机器学习工具
-
降维与可视化:
- umap-learn:UMAP 降维算法
- numba:加速计算
- pynndescent:近似最近邻搜索
-
颜色处理:
- matplotlib:基础绘图
- colorcet:颜色映射
- glasbey:离散颜色方案
- cmocean:海洋学颜色主题
-
聚类分析:
- hdbscan:密度聚类算法
-
文本处理:
- vectorizers:文本向量化工具
可选依赖
为了获得更完整的功能体验,建议安装以下可选包:
- 文本聚类标注:
- apricot-select:子模块选择算法
- networkx:图结构处理
安装方法
方法一:通过 PyPI 安装(推荐)
对于大多数用户,我们推荐使用 PyPI 进行安装,这是最简单的方法:
pip install thisnotthat
此命令会自动安装所有必需的依赖项。
方法二:从源代码安装(开发人员)
如果您需要最新版本或计划参与开发,可以从源代码安装:
pip install git+https://<repository-url>/thisnotthat
注意:源代码安装可能需要额外的构建工具,如 C 编译器。
安装验证
安装完成后,您可以通过以下方式验证安装是否成功:
import thisnotthat as tnt
print(tnt.__version__)
如果没有报错并显示版本号,则说明安装成功。
常见问题解答
-
依赖冲突:
- 如果遇到依赖冲突,建议使用虚拟环境
- 可以使用
conda create -n tnt_env python=3.8创建专用环境
-
安装速度慢:
- 考虑使用国内镜像源,如清华源或阿里云源
- 添加
-i https://pypi.tuna.tsinghua.edu.cn/simple参数
-
缺少系统库:
- 在 Linux 系统上可能需要安装
python3-dev等开发包 - Windows 用户可能需要安装 Microsoft Visual C++ 构建工具
- 在 Linux 系统上可能需要安装
后续步骤
成功安装后,您可以:
- 浏览项目文档了解基本用法
- 尝试运行示例代码熟悉功能
- 探索数据地图可视化功能
希望本指南能帮助您顺利安装 This Not That 项目。如有任何安装问题,建议查阅详细的错误信息并检查依赖版本是否兼容。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1