This Not That (TNT) 项目安装指南
2025-06-05 05:50:51作者:姚月梅Lane
项目简介
This Not That (TNT) 是一个基于 Panel 库构建的数据可视化工具,专注于数据地图的探索和分析。它为用户提供了一种直观的方式来交互式地探索高维数据,特别适合数据科学家和研究人员使用。
系统要求
在安装 TNT 之前,请确保您的系统满足以下基本要求:
- Python 3.7 或更高版本
- 稳定的互联网连接(用于下载依赖包)
- 足够的磁盘空间(建议至少 500MB 可用空间)
核心依赖
TNT 的核心功能依赖于以下 Python 包:
-
Panel 库:作为 TNT 的基础框架,Panel 提供了交互式仪表板的构建能力
- 包含 Bokeh(用于交互式可视化)
- 包含 Param(用于参数管理)
-
数据处理与分析:
- NumPy (>=1.22):基础数值计算
- pandas:数据框操作
- scikit-learn:机器学习工具
-
降维与可视化:
- umap-learn:UMAP 降维算法
- numba:加速计算
- pynndescent:近似最近邻搜索
-
颜色处理:
- matplotlib:基础绘图
- colorcet:颜色映射
- glasbey:离散颜色方案
- cmocean:海洋学颜色主题
-
聚类分析:
- hdbscan:密度聚类算法
-
文本处理:
- vectorizers:文本向量化工具
可选依赖
为了获得更完整的功能体验,建议安装以下可选包:
- 文本聚类标注:
- apricot-select:子模块选择算法
- networkx:图结构处理
安装方法
方法一:通过 PyPI 安装(推荐)
对于大多数用户,我们推荐使用 PyPI 进行安装,这是最简单的方法:
pip install thisnotthat
此命令会自动安装所有必需的依赖项。
方法二:从源代码安装(开发人员)
如果您需要最新版本或计划参与开发,可以从源代码安装:
pip install git+https://<repository-url>/thisnotthat
注意:源代码安装可能需要额外的构建工具,如 C 编译器。
安装验证
安装完成后,您可以通过以下方式验证安装是否成功:
import thisnotthat as tnt
print(tnt.__version__)
如果没有报错并显示版本号,则说明安装成功。
常见问题解答
-
依赖冲突:
- 如果遇到依赖冲突,建议使用虚拟环境
- 可以使用
conda create -n tnt_env python=3.8创建专用环境
-
安装速度慢:
- 考虑使用国内镜像源,如清华源或阿里云源
- 添加
-i https://pypi.tuna.tsinghua.edu.cn/simple参数
-
缺少系统库:
- 在 Linux 系统上可能需要安装
python3-dev等开发包 - Windows 用户可能需要安装 Microsoft Visual C++ 构建工具
- 在 Linux 系统上可能需要安装
后续步骤
成功安装后,您可以:
- 浏览项目文档了解基本用法
- 尝试运行示例代码熟悉功能
- 探索数据地图可视化功能
希望本指南能帮助您顺利安装 This Not That 项目。如有任何安装问题,建议查阅详细的错误信息并检查依赖版本是否兼容。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137