This Not That (TNT) 项目安装指南
2025-06-05 21:43:08作者:姚月梅Lane
项目简介
This Not That (TNT) 是一个基于 Panel 库构建的数据可视化工具,专注于数据地图的探索和分析。它为用户提供了一种直观的方式来交互式地探索高维数据,特别适合数据科学家和研究人员使用。
系统要求
在安装 TNT 之前,请确保您的系统满足以下基本要求:
- Python 3.7 或更高版本
- 稳定的互联网连接(用于下载依赖包)
- 足够的磁盘空间(建议至少 500MB 可用空间)
核心依赖
TNT 的核心功能依赖于以下 Python 包:
-
Panel 库:作为 TNT 的基础框架,Panel 提供了交互式仪表板的构建能力
- 包含 Bokeh(用于交互式可视化)
- 包含 Param(用于参数管理)
-
数据处理与分析:
- NumPy (>=1.22):基础数值计算
- pandas:数据框操作
- scikit-learn:机器学习工具
-
降维与可视化:
- umap-learn:UMAP 降维算法
- numba:加速计算
- pynndescent:近似最近邻搜索
-
颜色处理:
- matplotlib:基础绘图
- colorcet:颜色映射
- glasbey:离散颜色方案
- cmocean:海洋学颜色主题
-
聚类分析:
- hdbscan:密度聚类算法
-
文本处理:
- vectorizers:文本向量化工具
可选依赖
为了获得更完整的功能体验,建议安装以下可选包:
- 文本聚类标注:
- apricot-select:子模块选择算法
- networkx:图结构处理
安装方法
方法一:通过 PyPI 安装(推荐)
对于大多数用户,我们推荐使用 PyPI 进行安装,这是最简单的方法:
pip install thisnotthat
此命令会自动安装所有必需的依赖项。
方法二:从源代码安装(开发人员)
如果您需要最新版本或计划参与开发,可以从源代码安装:
pip install git+https://<repository-url>/thisnotthat
注意:源代码安装可能需要额外的构建工具,如 C 编译器。
安装验证
安装完成后,您可以通过以下方式验证安装是否成功:
import thisnotthat as tnt
print(tnt.__version__)
如果没有报错并显示版本号,则说明安装成功。
常见问题解答
-
依赖冲突:
- 如果遇到依赖冲突,建议使用虚拟环境
- 可以使用
conda create -n tnt_env python=3.8创建专用环境
-
安装速度慢:
- 考虑使用国内镜像源,如清华源或阿里云源
- 添加
-i https://pypi.tuna.tsinghua.edu.cn/simple参数
-
缺少系统库:
- 在 Linux 系统上可能需要安装
python3-dev等开发包 - Windows 用户可能需要安装 Microsoft Visual C++ 构建工具
- 在 Linux 系统上可能需要安装
后续步骤
成功安装后,您可以:
- 浏览项目文档了解基本用法
- 尝试运行示例代码熟悉功能
- 探索数据地图可视化功能
希望本指南能帮助您顺利安装 This Not That 项目。如有任何安装问题,建议查阅详细的错误信息并检查依赖版本是否兼容。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881