CARLA模拟器中实现视觉传感器图像攻击的技术方案
2025-05-19 18:30:28作者:傅爽业Veleda
概述
在自动驾驶仿真平台CARLA中,视觉传感器(如摄像头)是感知环境的重要组件。研究人员有时需要模拟真实世界中的图像攻击场景,例如对抗样本攻击,以测试自动驾驶系统的鲁棒性。本文将详细介绍在CARLA 0.9.15版本中实现视觉传感器图像修改的几种技术方案。
图像攻击的实现原理
图像攻击的核心目标是通过修改传感器采集的图像数据,影响后续的感知或控制算法决策。在CARLA仿真环境中,这需要干预图像数据的生成或传输过程。根据攻击点的不同,我们可以选择在三个层面进行干预:
- 渲染层面:在Unreal Engine渲染管线中直接修改
- 传感器数据层面:在CARLA传感器数据处理环节修改
- 应用层面:在PythonAPI接收数据后修改
具体实现方案
方案一:修改PixelReader源码
最底层的修改方式是在CARLA源码中的PixelReader.cpp文件进行修改。这个文件位于项目路径的Unreal/CarlaUE4/Plugins/Carla/Source/Carla/Sensor/目录下。
实现步骤:
- 定位到图像数据处理的关键函数
- 在数据发送前插入攻击算法
- 修改后的图像数据会被直接发送给客户端
优点:修改彻底,影响范围可控 缺点:需要重新编译CARLA,开发周期较长
方案二:PythonAPI回调函数修改
对于快速原型开发,可以在PythonAPI层面通过传感器监听回调函数实现图像修改。
def attack_image(image):
# 实现你的攻击算法
modified_data = your_attack_algorithm(image.raw_data)
# 创建新的carla.Image对象
new_image = carla.Image()
# 填充修改后的数据
new_image.raw_data = modified_data
return new_image
# 传感器监听
camera.listen(lambda image: process_image(attack_image(image)))
优点:开发快速,无需重新编译 缺点:修改发生在数据接收后,不影响其他客户端
方案三:Unreal Engine渲染管线修改
对于需要模拟物理层面攻击的场景(如镜头污损、强光干扰等),可以直接修改Unreal Engine的渲染代码。
实现要点:
- 定位到后期处理(Post Process)阶段
- 添加自定义的材质或着色器
- 实现各种光学干扰效果
适用场景:模拟真实物理攻击,如激光干扰、雨滴效果等
技术选型建议
根据不同的应用场景,建议采用以下方案:
- 算法研究:优先选择PythonAPI回调方案,开发效率高
- 系统测试:推荐修改PixelReader源码,影响范围可控
- 物理攻击模拟:必须修改Unreal Engine渲染管线
注意事项
- 修改后的图像数据需要保持原有的格式和大小
- 时序一致性很重要,攻击不应导致帧率显著下降
- 在多传感器场景下,需要确保攻击的针对性
通过以上方案,研究人员可以在CARLA仿真环境中灵活实现各种图像攻击场景,为自动驾驶系统的安全性测试提供有力工具。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
256
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92