CARLA模拟器中实现视觉传感器图像攻击的技术方案
2025-05-19 22:48:34作者:傅爽业Veleda
概述
在自动驾驶仿真平台CARLA中,视觉传感器(如摄像头)是感知环境的重要组件。研究人员有时需要模拟真实世界中的图像攻击场景,例如对抗样本攻击,以测试自动驾驶系统的鲁棒性。本文将详细介绍在CARLA 0.9.15版本中实现视觉传感器图像修改的几种技术方案。
图像攻击的实现原理
图像攻击的核心目标是通过修改传感器采集的图像数据,影响后续的感知或控制算法决策。在CARLA仿真环境中,这需要干预图像数据的生成或传输过程。根据攻击点的不同,我们可以选择在三个层面进行干预:
- 渲染层面:在Unreal Engine渲染管线中直接修改
- 传感器数据层面:在CARLA传感器数据处理环节修改
- 应用层面:在PythonAPI接收数据后修改
具体实现方案
方案一:修改PixelReader源码
最底层的修改方式是在CARLA源码中的PixelReader.cpp文件进行修改。这个文件位于项目路径的Unreal/CarlaUE4/Plugins/Carla/Source/Carla/Sensor/目录下。
实现步骤:
- 定位到图像数据处理的关键函数
- 在数据发送前插入攻击算法
- 修改后的图像数据会被直接发送给客户端
优点:修改彻底,影响范围可控 缺点:需要重新编译CARLA,开发周期较长
方案二:PythonAPI回调函数修改
对于快速原型开发,可以在PythonAPI层面通过传感器监听回调函数实现图像修改。
def attack_image(image):
# 实现你的攻击算法
modified_data = your_attack_algorithm(image.raw_data)
# 创建新的carla.Image对象
new_image = carla.Image()
# 填充修改后的数据
new_image.raw_data = modified_data
return new_image
# 传感器监听
camera.listen(lambda image: process_image(attack_image(image)))
优点:开发快速,无需重新编译 缺点:修改发生在数据接收后,不影响其他客户端
方案三:Unreal Engine渲染管线修改
对于需要模拟物理层面攻击的场景(如镜头污损、强光干扰等),可以直接修改Unreal Engine的渲染代码。
实现要点:
- 定位到后期处理(Post Process)阶段
- 添加自定义的材质或着色器
- 实现各种光学干扰效果
适用场景:模拟真实物理攻击,如激光干扰、雨滴效果等
技术选型建议
根据不同的应用场景,建议采用以下方案:
- 算法研究:优先选择PythonAPI回调方案,开发效率高
- 系统测试:推荐修改PixelReader源码,影响范围可控
- 物理攻击模拟:必须修改Unreal Engine渲染管线
注意事项
- 修改后的图像数据需要保持原有的格式和大小
- 时序一致性很重要,攻击不应导致帧率显著下降
- 在多传感器场景下,需要确保攻击的针对性
通过以上方案,研究人员可以在CARLA仿真环境中灵活实现各种图像攻击场景,为自动驾驶系统的安全性测试提供有力工具。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137