Medusa项目Docker部署中Admin仪表盘Widget加载问题解析
问题背景
在使用Medusa 2.4.0版本构建电商系统时,开发者在Docker环境中部署Admin仪表盘时遇到了Widget加载失败的问题。具体表现为添加自定义Widget后,Admin界面无法正常加载,控制台显示MIME类型错误。
核心问题分析
1. 路径冲突问题
Docker构建文件中将工作目录设置为/app,这与Medusa Admin默认的静态资源路径/app产生了冲突。这种路径重叠会导致Vite构建的资源无法被正确加载。
2. 构建流程不规范
项目直接使用yarn build后启动,没有遵循Medusa推荐的完整构建流程。正确的生产环境构建应该包含专门的构建步骤和依赖安装过程。
3. 环境变量配置不当
从错误信息可以看出,系统在运行时仍然使用了开发环境的配置,特别是Vite的热更新(HMR)代码被注入到了生产环境的HTML中。这表明NODE_ENV环境变量未被正确设置为production。
解决方案
1. 修改Docker工作路径
建议将Dockerfile中的WORKDIR修改为与Medusa Admin默认路径不同的值,例如:
WORKDIR /usr/src/app
2. 完善构建流程
按照Medusa官方推荐的构建流程,Dockerfile应该包含以下关键步骤:
# 安装依赖
RUN yarn install
# 构建项目
RUN yarn build
# 进入构建目录安装生产依赖
WORKDIR /.medusa/server
RUN yarn install --production
3. 正确配置环境变量
对于无法直接设置NODE_ENV的环境(如AWS App Runner),可以通过以下方式解决:
- 在package.json中修改启动脚本:
"scripts": {
"start": "medusa start --prod"
}
- 或者在Dockerfile中使用ENV指令:
ENV NODE_ENV=production
最佳实践建议
-
分离开发与生产配置:确保开发环境和生产环境使用不同的配置文件和构建流程。
-
构建缓存优化:在Dockerfile中合理使用缓存层,加速构建过程:
COPY package.json yarn.lock ./
RUN yarn install
COPY . .
-
资源路径检查:在部署前验证所有静态资源的路径是否正确,特别是使用自定义路径时。
-
环境一致性:确保本地开发环境与生产环境的Node.js版本、依赖版本等完全一致。
总结
Medusa项目在Docker环境中的部署需要特别注意路径配置、构建流程和环境变量设置。通过调整工作目录、完善构建步骤和正确配置生产环境,可以有效解决Admin仪表盘Widget加载失败的问题。这些经验不仅适用于当前版本,也为后续版本的部署提供了参考方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00