在cppformat项目中动态添加格式化参数的技术实现
2025-05-09 20:49:57作者:宣聪麟
在C++开发中,格式化字符串是一个常见的需求,cppformat(即fmt库)提供了强大的格式化功能。本文将探讨一个实际开发中可能遇到的场景:如何在运行时动态地向格式化字符串中添加额外的参数。
问题背景
假设我们有一个基础格式化需求:
std::string s = fmt::format("{0}, {1}", variable1, variable2);
但我们需要在保持原有功能的基础上,自动为所有格式化操作添加一个额外的参数,例如:
std::string s = mycustomfmt::format("{0}, {1}", variable1, variable2);
// 实际效果相当于
std::string s = fmt::format("[{2}]: {0}, {1}", variable1, variable2, variable3);
技术实现方案
直接修改格式字符串(不推荐)
理论上可以通过修改格式字符串来实现:
- 在原始格式字符串前添加前缀
- 调整所有参数索引
- 使用
fmt::runtime包装修改后的格式字符串
但这种方案存在明显缺点:
- 需要复杂的字符串操作来调整参数索引
- 容易出错,特别是当格式字符串包含复杂格式说明符时
- 代码可维护性差
推荐方案:分步格式化
更稳健的做法是采用分步格式化的方法:
- 首先格式化原始内容:
auto content = fmt::format(fmt::runtime(original_format), args...);
- 然后添加前缀:
auto final_result = fmt::format("[{}]: {}", variable3, content);
这种方法具有以下优势:
- 不需要修改原始格式字符串
- 避免参数索引混乱
- 代码清晰易懂
- 性能影响小
进阶实现
对于需要频繁使用此模式的场景,可以创建一个包装器类:
class PrefixFormatter {
public:
PrefixFormatter(std::string_view prefix_format, auto prefix_arg)
: prefix_format_(prefix_format), prefix_arg_(prefix_arg) {}
template <typename... Args>
auto format(std::string_view fmt, Args&&... args) {
auto content = fmt::format(fmt::runtime(fmt), std::forward<Args>(args)...);
return fmt::format(prefix_format_, prefix_arg_, content);
}
private:
std::string_view prefix_format_;
auto prefix_arg_;
};
使用示例:
PrefixFormatter formatter("[{}]: {}", variable3);
auto result = formatter("{0}, {1}", variable1, variable2);
性能考虑
分步格式化方案虽然需要进行两次格式化操作,但实际性能影响通常很小,因为:
- 现代C++编译器能够很好地优化这种简单操作
- 避免了复杂的字符串解析和重建
- 内存分配次数仍然可控
对于性能敏感的场景,可以考虑使用fmt::memory_buffer来进一步优化内存分配。
总结
在cppformat项目中动态添加格式化参数时,推荐使用分步格式化的方法,这种方法既保持了代码的清晰性,又确保了正确性。通过创建适当的包装器类,可以优雅地实现这一功能,同时保持良好的代码组织和可维护性。
对于更复杂的格式化需求,建议深入研究fmt库的类型擦除和内存缓冲区等高级特性,这些功能可以提供更大的灵活性和更好的性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147