Hardhat项目中关于Solidity测试不确定执行警告的技术解析
2025-05-29 00:45:19作者:齐冠琰
在区块链智能合约开发中,测试的确定性和可重复性至关重要。Hardhat项目近期在其Alpha版本中引入了一项重要改进,专门针对Solidity测试中可能出现的"不确定执行"(Indeterministic Execution)问题进行了优化。
问题背景
当开发者使用Hardhat进行智能合约测试时,测试框架会通过重新执行失败测试用例的方式来生成详细的调用堆栈信息。然而,在这个过程中存在两个主要的技术挑战:
- 作弊码(Cheatcodes)的影响:测试框架中使用的特殊作弊码可能会在重新执行时产生不一致的行为
- "latest"区块分叉问题:当测试基于"latest"区块进行分叉时,由于区块链状态随时间变化,可能导致重新执行结果不一致
技术解决方案
Hardhat团队通过以下方式解决了这些问题:
-
作弊码处理优化:改进了测试框架对作弊码的跟踪和管理机制,确保在重新执行时能够保持一致的上下文环境
-
区块状态固定:对于使用"latest"区块的测试场景,框架现在会记录并固定测试初始时的确切区块状态,避免因区块链持续出块导致的状态差异
-
警告机制:当检测到可能导致不确定执行的测试场景时,框架会提供清晰的警告信息,帮助开发者识别和修正问题
实际意义
这项改进为开发者带来了以下好处:
- 更可靠的测试结果:减少了因执行环境变化导致的测试结果不一致问题
- 更准确的调试信息:确保错误堆栈跟踪与原始测试执行完全匹配
- 更好的开发体验:明确的警告信息帮助开发者快速定位潜在问题
实现细节
在技术实现上,Hardhat团队主要修改了测试执行引擎的核心逻辑,包括:
- 增加了执行上下文快照功能
- 改进了作弊码的状态管理
- 引入了执行环境一致性检查机制
这些改进使得Hardhat在保持原有灵活性的同时,大大提高了测试的可靠性和确定性。
结论
Hardhat对Solidity测试中不确定执行问题的处理,体现了其对开发者体验和测试可靠性的高度重视。这项改进将帮助开发者编写更健壮的智能合约测试,最终提升整个项目的质量和安全性。随着区块链开发工具的不断成熟,类似的技术优化将继续推动整个生态向更专业的方向发展。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137