Minion Agent 项目启动与配置教程
2025-05-19 18:59:36作者:裘晴惠Vivianne
1. 项目目录结构及介绍
Minion Agent 项目的目录结构如下所示:
minion-agent/
├── .clinerules
├── .env.example
├── .gitignore
├── docs/
├── examples/
│ ├── example.py
│ ├── example_browser_use.py
│ ├── example_deep_research.py
│ ├── example_deep_research_html.py
│ ├── example_deep_research_pdf.py
│ ├── example_hit.py
│ ├── example_reason.py
│ ├── example_search_deepseek_prover.py
│ ├── example_with_managed_agents.py
│ └── example_with_managed_agents1.py
├── minion_agent/
│ ├── __init__.py
│ ├── agent.py
│ ├── config.py
│ ├── framework.py
│ ├── tools/
│ │ ├── __init__.py
│ │ └── browser_tool.py
│ └── utils.py
├── original.md
├── pyproject.toml
├── pytest.ini
├── requirements-dev.txt
├── requirements.txt
├── setup.py
└── README.md
.clinerules:此文件包含一些代码风格和格式化的规则。.env.example:示例环境变量文件,用于展示如何配置环境变量。.gitignore:Git 忽略文件,用于指定不需要提交到版本控制系统的文件和目录。docs/:文档目录,可能包含项目的文档和说明。examples/:示例脚本目录,包含了一些如何使用 Minion Agent 的示例代码。minion_agent/:项目的主要目录,包含了 Minion Agent 的实现代码。original.md:原始的 Markdown 文件,可能包含了项目的早期说明。pyproject.toml:Python 项目配置文件,用于定义项目的 metadata 和 dependencies。pytest.ini:pytest 配置文件,用于配置单元测试。requirements-dev.txt和requirements.txt:项目的依赖文件,分别用于开发环境和生产环境。setup.py:Python 包的设置文件,用于打包和分发项目。README.md:项目的自述文件,包含了项目的介绍和基本的使用说明。
2. 项目的启动文件介绍
项目的启动文件通常是 examples/ 目录下的示例脚本,例如 example.py。以下是一个简化的启动文件示例:
from minion_agent import MinionAgent, AgentConfig
async def main():
# 配置 Agent
agent_config = AgentConfig(
model_id="gpt-4",
name="Minion",
description="A helpful research assistant",
model_args={
"azure_endpoint": "https://api.openai.com",
"api_key": "your_api_key",
"api_version": "v1"
}
)
# 创建 Agent 实例
agent = await MinionAgent.create(agent_config)
# 运行 Agent
result = agent.run("What are the latest developments in AI?")
print("Agent's response:", result)
import asyncio
asyncio.run(main())
这个脚本展示了如何配置和创建一个 MinionAgent 实例,然后运行一个简单的查询。
3. 项目的配置文件介绍
项目的配置主要通过 AgentConfig 类来进行,该类接受多个参数来配置 Agent 的行为。配置文件通常是 .env.example 文件,它提供了一个环境变量的示例,这些变量可以在实际的项目环境中设置。
以下是一个配置文件的示例内容:
AZURE_DEPLOYMENT_NAME=your_deployment_name
AZURE_OPENAI_ENDPOINT=https://api.openai.com
AZURE_OPENAI_API_KEY=your_api_key
OPENAI_API_VERSION=v1
这些环境变量可以在 Python 脚本中使用 os.environ.get("VAR_NAME") 来访问,并且用于配置 AgentConfig 类。
确保在开始项目之前,你已经在你的环境中设置了这些变量,或者在本地 .env 文件中定义了它们。如果你使用的是 python-dotenv 库,你可以通过以下方式来加载它们:
from dotenv import load_dotenv
load_dotenv()
以上就是 Minion Agent 项目的启动和配置的基本教程。在实际使用之前,请确保仔细阅读了项目的官方文档和自述文件,以便更好地理解项目的工作原理和配置选项。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92