MoE-LLaVA项目中的模型训练与评估问题深度解析
2025-07-04 04:25:19作者:钟日瑜
模型训练阶段的关键问题
在MoE-LLaVA项目的复现过程中,研究者们遇到了几个关键的技术挑战。首先是训练阶段的损失值问题,特别是在MiniCPM模型上的表现。初始训练阶段的高损失值(约5)是正常现象,这与模型架构和训练数据的特性有关。
值得注意的是,MiniCPM模型在训练末期会出现损失值突然上升的现象。这一特性在其他模型中并不常见,可能是MiniCPM特有的行为。因此,建议在训练过程中保存多个检查点,而不是仅依赖最终的训练结果。例如,在总共5198步的训练中,5000步的检查点可能比最终检查点表现更好。
评估结果差异分析
在模型评估阶段,研究者们发现复现结果与论文报告存在显著差异。特别是在TextVQA数据集上,复现结果(31分)与论文结果(68.7分)差距较大。经过深入交流发现,这种差异源于对论文方法的误解。
实际上,论文中报告的高分结果并非来自第二阶段的训练数据,而是采用了不同的训练策略。具体来说,应该参考论文表5的变体c和"训练策略效果"小节中的设置。这一发现强调了仔细阅读论文方法部分的重要性,特别是在复现复杂模型时。
MiniCPM模型集成经验
在将MiniCPM LLM集成到MoE-LLaVA框架的过程中,研究者分享了宝贵经验。对话模板的配置对模型性能有显著影响。正确的配置应该使用特定的系统提示和分隔符风格:
conv_minicpm = Conversation(
system="A chat between a curious user and an artificial intelligence assistant...",
roles=("USER", "ASSISTANT"),
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
不正确的模板配置会导致模型输出重复或无意义的内容。此外,分辨率选择也影响最终效果,原始研究使用了384×384分辨率,而部分复现尝试使用了336×336分辨率,这可能导致细微的性能差异。
模型评估建议
对于希望评估模型性能的研究者,建议重点关注以下几个指标:
- VQA-v2数据集的yes/no、number和other类别的准确率
- TextVQA数据集的整体表现
- 不同训练阶段的损失曲线变化
典型的评估结果范围如下:
- 非MoE版本:TextVQA约33%,VQA-v2约54%
- MoE版本:TextVQA约47%,VQA-v2有1-2%的提升
这些经验为后续研究者提供了有价值的参考,帮助他们在复现和改进MoE-LLaVA模型时避免常见陷阱,更准确地评估模型性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210