MoE-LLaVA项目中的模型训练与评估问题深度解析
2025-07-04 14:59:09作者:钟日瑜
模型训练阶段的关键问题
在MoE-LLaVA项目的复现过程中,研究者们遇到了几个关键的技术挑战。首先是训练阶段的损失值问题,特别是在MiniCPM模型上的表现。初始训练阶段的高损失值(约5)是正常现象,这与模型架构和训练数据的特性有关。
值得注意的是,MiniCPM模型在训练末期会出现损失值突然上升的现象。这一特性在其他模型中并不常见,可能是MiniCPM特有的行为。因此,建议在训练过程中保存多个检查点,而不是仅依赖最终的训练结果。例如,在总共5198步的训练中,5000步的检查点可能比最终检查点表现更好。
评估结果差异分析
在模型评估阶段,研究者们发现复现结果与论文报告存在显著差异。特别是在TextVQA数据集上,复现结果(31分)与论文结果(68.7分)差距较大。经过深入交流发现,这种差异源于对论文方法的误解。
实际上,论文中报告的高分结果并非来自第二阶段的训练数据,而是采用了不同的训练策略。具体来说,应该参考论文表5的变体c和"训练策略效果"小节中的设置。这一发现强调了仔细阅读论文方法部分的重要性,特别是在复现复杂模型时。
MiniCPM模型集成经验
在将MiniCPM LLM集成到MoE-LLaVA框架的过程中,研究者分享了宝贵经验。对话模板的配置对模型性能有显著影响。正确的配置应该使用特定的系统提示和分隔符风格:
conv_minicpm = Conversation(
system="A chat between a curious user and an artificial intelligence assistant...",
roles=("USER", "ASSISTANT"),
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
不正确的模板配置会导致模型输出重复或无意义的内容。此外,分辨率选择也影响最终效果,原始研究使用了384×384分辨率,而部分复现尝试使用了336×336分辨率,这可能导致细微的性能差异。
模型评估建议
对于希望评估模型性能的研究者,建议重点关注以下几个指标:
- VQA-v2数据集的yes/no、number和other类别的准确率
- TextVQA数据集的整体表现
- 不同训练阶段的损失曲线变化
典型的评估结果范围如下:
- 非MoE版本:TextVQA约33%,VQA-v2约54%
- MoE版本:TextVQA约47%,VQA-v2有1-2%的提升
这些经验为后续研究者提供了有价值的参考,帮助他们在复现和改进MoE-LLaVA模型时避免常见陷阱,更准确地评估模型性能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K