Rust JSON Benchmark:高性能JSON解析与序列化的终极选择
2024-09-09 15:41:21作者:咎岭娴Homer
项目介绍
Rust JSON Benchmark 是一个专注于JSON解析与序列化性能的Rust项目。它是对 nativejson-benchmark 的Rust移植版本,旨在通过对比不同Rust库的性能,帮助开发者选择最适合其应用场景的JSON处理库。项目中测试了三个主流的Rust JSON库:serde_json、rustc-serialize 和 simd-json。
项目技术分析
测试环境
- CPU: Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz(2015年笔记本CPU)
- Rust版本: rustc 1.59.0-nightly (0b6f079e4 2021-12-07)
测试结果
通过运行 cargo run --release,项目生成了详细的性能对比数据,展示了不同库在解析和序列化JSON数据时的速度。以下是部分测试结果:
DOM STRUCT
======= serde_json ======= parse|stringify ===== parse|stringify ====
data/canada.json 320 MB/s 430 MB/s 580 MB/s 310 MB/s
data/citm_catalog.json 420 MB/s 560 MB/s 710 MB/s 880 MB/s
data/twitter.json 300 MB/s 910 MB/s 550 MB/s 1060 MB/s
==== rustc_serialize ===== parse|stringify ===== parse|stringify ====
data/canada.json 150 MB/s 67 MB/s 120 MB/s 46 MB/s
data/citm_catalog.json 210 MB/s 180 MB/s 140 MB/s 210 MB/s
data/twitter.json 120 MB/s 330 MB/s 87 MB/s 350 MB/s
======= simd-json ======== parse|stringify ===== parse|stringify ====
data/canada.json 380 MB/s 470 MB/s 580 MB/s
data/citm_catalog.json 720 MB/s 760 MB/s 1220 MB/s
data/twitter.json 810 MB/s 890 MB/s 1050 MB/s
对比分析
- serde_json: 在DOM和STRUCT模式下表现均衡,适合大多数应用场景。
- rustc-serialize: 性能相对较低,但在某些特定场景下仍有应用价值。
- simd-json: 依赖现代x86 CPU,性能显著优于其他库,特别适合高性能需求场景。
项目及技术应用场景
Rust JSON Benchmark 适用于以下场景:
- 高性能计算: 需要处理大量JSON数据的应用,如大数据分析、实时数据处理等。
- Web服务: 在Web服务中需要快速解析和生成JSON响应的场景。
- 嵌入式系统: 在资源受限的环境中,选择合适的JSON库以优化性能。
项目特点
- 全面性能测试: 提供了详细的性能对比数据,帮助开发者做出明智的选择。
- 多库支持: 测试了多个主流Rust JSON库,覆盖了不同性能需求的场景。
- 开源免费: 项目采用Apache 2.0和MIT双授权,开发者可以自由使用和贡献代码。
通过 Rust JSON Benchmark,开发者可以轻松找到最适合其应用需求的JSON处理库,提升应用性能,优化资源使用。无论你是初学者还是资深开发者,这个项目都能为你提供宝贵的参考。立即尝试,体验Rust在JSON处理上的强大性能吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
879