AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.18版本
AWS Deep Learning Containers(DLC)项目为机器学习开发者提供了预构建的深度学习环境容器镜像,这些镜像经过优化并预装了主流深度学习框架及其依赖项。该项目极大地简化了深度学习模型的训练和部署流程,使开发者能够快速在AWS云环境中启动工作负载。
近日,AWS DLC项目发布了针对ARM64架构的PyTorch推理镜像v1.18版本,主要支持PyTorch 2.6.0框架。这一更新为使用ARM架构处理器的AWS EC2实例用户提供了最新的PyTorch推理环境。
镜像版本特性
本次发布的镜像包含两个主要变体:
-
CPU版本镜像:基于Ubuntu 22.04操作系统,预装了PyTorch 2.6.0 CPU版本,支持Python 3.12环境。该镜像适用于不需要GPU加速的推理场景。
-
GPU版本镜像:同样基于Ubuntu 22.04,预装了PyTorch 2.6.0 CUDA 12.4版本,专为配备NVIDIA GPU的ARM64架构EC2实例设计,可充分利用GPU的并行计算能力加速模型推理。
关键软件包更新
两个镜像版本均包含了一系列重要的Python软件包和系统依赖:
- 核心框架:PyTorch 2.6.0及其生态系统组件(torchaudio 2.6.0、torchvision 0.21.0)
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
- 数据处理库:NumPy 2.2.3、Pandas 2.2.3(仅GPU版本)、SciPy 1.15.2
- 图像处理:OpenCV 4.11.0.86、Pillow 11.1.0
- 开发工具:Cython 3.0.12、Ninja 1.11.1.1
- AWS集成:boto3 1.37.8、awscli 1.38.8
GPU版本额外包含了CUDA 12.4相关的系统库,如cuBLAS和cuDNN,这些都是深度学习计算的关键加速库。
技术价值与应用场景
ARM64架构在云计算领域越来越受到重视,因其在能效比方面的优势。AWS Graviton系列处理器就是基于ARM架构,为云工作负载提供了高性价比的计算能力。
这些预构建的PyTorch ARM64镜像特别适合以下场景:
- 成本敏感型推理服务:在Graviton实例上运行模型推理可以显著降低运营成本
- 边缘计算部署:ARM架构在边缘设备中广泛使用,这些镜像为边缘AI提供了兼容性保障
- 持续集成/持续部署:预构建的标准化环境简化了MLOps流程
- 快速原型开发:开发者可以立即获得配置完善的PyTorch环境,无需手动安装依赖
版本兼容性说明
值得注意的是,PyTorch 2.6.0引入了一些新特性和API变化,开发者在迁移现有模型时需要关注:
- 改进了动态形状支持
- 优化了ARM架构下的算子性能
- 更新了自动微分机制
- 引入了新的量化功能
对于生产环境部署,建议先在小规模测试环境中验证模型兼容性,再全面升级。
总结
AWS Deep Learning Containers项目通过提供这些经过充分测试和优化的PyTorch ARM64镜像,降低了开发者使用ARM架构进行深度学习推理的门槛。特别是对于已经在使用AWS Graviton实例的用户,这些镜像可以直接部署,无需自行配置复杂的软件环境,大大提高了工作效率。随着ARM生态的不断发展,这类优化镜像将在云原生AI领域发挥越来越重要的作用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00