ModelContextProtocol C SDK 中自定义 JSON Schema 生成的实践指南
在开发基于 ModelContextProtocol (MCP) 的工具时,正确处理输入参数的 JSON Schema 定义对于 AI 代理理解数据类型至关重要。本文将深入探讨如何在 C# SDK 中自定义 JSON Schema 生成,特别是处理 .NET 特有的日期时间类型。
背景与挑战
当开发者定义 MCP 工具时,输入参数的 Schema 会自动生成。对于包含 .NET 特有类型(如 DateTime、DateTimeOffset 和 TimeSpan)的输入类,默认生成的 Schema 可能不足以清晰表达这些类型的语义。
例如,对于以下输入类:
public class TemporalData
{
[JsonPropertyName("dateTimeValue")]
public DateTime DateTimeValue { get; set; }
[JsonPropertyName("dateTimeOffsetValue")]
public DateTimeOffset DateTimeOffsetValue { get; set; }
[JsonPropertyName("timeSpanValue")]
public TimeSpan TimeSpanValue { get; set; }
}
默认生成的 Schema 中,只有 TimeSpan 类型会带有注释说明其 .NET 类型信息,而 DateTime 和 DateTimeOffset 则缺乏足够的元数据描述。
解决方案
1. 使用 TransformSchemaNode 自定义 Schema
对于动态创建的工具,可以通过 SchemaCreateOptions
的 TransformSchemaNode
回调来自定义 Schema 生成:
var tool = McpServerTool.Create((TemporalData input) => "received data", new()
{
SchemaCreateOptions = new()
{
TransformSchemaNode = (ctx, node) =>
{
Type? t = ctx.PropertyInfo?.PropertyType;
if (t == typeof(DateTime) || t == typeof(DateTimeOffset))
{
node["format"] = "date-time";
}
else if (t == typeof(TimeSpan))
{
node["format"] = "duration";
}
return node;
},
},
});
这种方法可以灵活地为特定类型添加格式(format)信息,使生成的 Schema 更加精确。
2. 内置类型映射改进
最新版本的 SDK 已经内置了对常见 .NET 类型的支持,包括:
- DateTime 和 DateTimeOffset 会被标记为 "date-time" 格式
- TimeSpan 会被标记为 "duration" 格式
这些改进使得 Schema 生成更加符合 JSON Schema 规范,无需开发者额外配置。
3. 静态工具方法的限制与替代方案
对于使用 [McpServerTool]
属性标记的静态方法,目前不支持直接通过属性参数来自定义 Schema 生成。开发者可以考虑以下替代方案:
- 改用动态工具创建方式,获得更细粒度的控制
- 创建自定义工具包装器,继承或组合现有的工具实例
- 实现自己的工具发现和注册逻辑,替代属性标记方式
最佳实践建议
- 优先使用最新版本:确保使用包含内置类型映射改进的 SDK 版本
- 明确类型语义:对于自定义类型,考虑添加格式(format)和注释(comment)信息
- 保持一致性:在整个项目中采用统一的 Schema 自定义策略
- 文档化约定:记录团队对特殊类型的处理方式,便于维护
总结
ModelContextProtocol C# SDK 提供了多种方式来定制 JSON Schema 生成,从简单的回调函数到内置的类型映射支持。理解这些机制可以帮助开发者创建更精确、更易于 AI 代理理解的工具接口定义。对于需要精细控制的场景,推荐使用动态工具创建方式;而对于简单用例,则可以依赖 SDK 的内置支持。
随着 SDK 的不断演进,未来可能会提供更多便捷的方式来定制 Schema 生成,开发者应保持对更新日志的关注,及时采用新的最佳实践。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









