ModelContextProtocol C SDK 中自定义 JSON Schema 生成的实践指南
在开发基于 ModelContextProtocol (MCP) 的工具时,正确处理输入参数的 JSON Schema 定义对于 AI 代理理解数据类型至关重要。本文将深入探讨如何在 C# SDK 中自定义 JSON Schema 生成,特别是处理 .NET 特有的日期时间类型。
背景与挑战
当开发者定义 MCP 工具时,输入参数的 Schema 会自动生成。对于包含 .NET 特有类型(如 DateTime、DateTimeOffset 和 TimeSpan)的输入类,默认生成的 Schema 可能不足以清晰表达这些类型的语义。
例如,对于以下输入类:
public class TemporalData
{
[JsonPropertyName("dateTimeValue")]
public DateTime DateTimeValue { get; set; }
[JsonPropertyName("dateTimeOffsetValue")]
public DateTimeOffset DateTimeOffsetValue { get; set; }
[JsonPropertyName("timeSpanValue")]
public TimeSpan TimeSpanValue { get; set; }
}
默认生成的 Schema 中,只有 TimeSpan 类型会带有注释说明其 .NET 类型信息,而 DateTime 和 DateTimeOffset 则缺乏足够的元数据描述。
解决方案
1. 使用 TransformSchemaNode 自定义 Schema
对于动态创建的工具,可以通过 SchemaCreateOptions 的 TransformSchemaNode 回调来自定义 Schema 生成:
var tool = McpServerTool.Create((TemporalData input) => "received data", new()
{
SchemaCreateOptions = new()
{
TransformSchemaNode = (ctx, node) =>
{
Type? t = ctx.PropertyInfo?.PropertyType;
if (t == typeof(DateTime) || t == typeof(DateTimeOffset))
{
node["format"] = "date-time";
}
else if (t == typeof(TimeSpan))
{
node["format"] = "duration";
}
return node;
},
},
});
这种方法可以灵活地为特定类型添加格式(format)信息,使生成的 Schema 更加精确。
2. 内置类型映射改进
最新版本的 SDK 已经内置了对常见 .NET 类型的支持,包括:
- DateTime 和 DateTimeOffset 会被标记为 "date-time" 格式
- TimeSpan 会被标记为 "duration" 格式
这些改进使得 Schema 生成更加符合 JSON Schema 规范,无需开发者额外配置。
3. 静态工具方法的限制与替代方案
对于使用 [McpServerTool] 属性标记的静态方法,目前不支持直接通过属性参数来自定义 Schema 生成。开发者可以考虑以下替代方案:
- 改用动态工具创建方式,获得更细粒度的控制
- 创建自定义工具包装器,继承或组合现有的工具实例
- 实现自己的工具发现和注册逻辑,替代属性标记方式
最佳实践建议
- 优先使用最新版本:确保使用包含内置类型映射改进的 SDK 版本
- 明确类型语义:对于自定义类型,考虑添加格式(format)和注释(comment)信息
- 保持一致性:在整个项目中采用统一的 Schema 自定义策略
- 文档化约定:记录团队对特殊类型的处理方式,便于维护
总结
ModelContextProtocol C# SDK 提供了多种方式来定制 JSON Schema 生成,从简单的回调函数到内置的类型映射支持。理解这些机制可以帮助开发者创建更精确、更易于 AI 代理理解的工具接口定义。对于需要精细控制的场景,推荐使用动态工具创建方式;而对于简单用例,则可以依赖 SDK 的内置支持。
随着 SDK 的不断演进,未来可能会提供更多便捷的方式来定制 Schema 生成,开发者应保持对更新日志的关注,及时采用新的最佳实践。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267
cinatrac++20实现的跨平台、header only、跨平台的高性能http库。C++00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00