Prometheus MCP Server 使用指南:与AI助手协同监控分析
2025-06-12 05:33:09作者:舒璇辛Bertina
项目概述
Prometheus MCP Server 是一个创新的中间件服务,它架起了Prometheus监控系统与AI助手(如Claude)之间的桥梁。通过标准化的工具接口,AI助手可以直接查询和分析您的Prometheus监控数据,为用户提供智能化的监控分析和决策支持。
核心功能工具详解
1. 查询类工具
即时查询工具 (execute_query)
- 功能:执行PromQL即时查询,返回当前时刻的指标值
- 参数说明:
query:必填的PromQL查询语句time:可选的时间戳参数(RFC3339或Unix格式),默认为当前时间
- 典型应用场景:
- 快速检查服务状态
- 获取当前系统指标快照
- 验证告警条件
范围查询工具 (execute_range_query)
- 功能:执行PromQL范围查询,返回指定时间段的指标变化
- 参数说明:
query:必填的PromQL查询语句start/end:必须的时间范围参数step:查询分辨率步长(如'15s'、'5m'等)
- 最佳实践:
- 长期趋势分析建议使用较大的step值
- 精细问题诊断可使用较小step值
- 时间范围与step值应保持合理比例
2. 发现类工具
指标列表工具 (list_metrics)
- 功能:获取Prometheus中所有可用的指标名称
- 使用技巧:
- 适合系统指标探索阶段
- 可与通配符查询配合使用
- 建议定期执行以发现新增指标
元数据查询工具 (get_metric_metadata)
- 功能:获取特定指标的详细元信息
- 输出内容:
- 指标类型(Counter/Gauge/Histogram等)
- 帮助说明文档
- 单位信息(如有)
目标状态工具 (get_targets)
- 功能:获取所有监控目标的健康状态
- 输出分析:
- UP/DOWN状态
- 最后抓取时间
- 错误信息(如有)
典型工作流示例
基础健康检查流程
- 使用
execute_query检查up指标 - 分析返回值判断服务状态
- 对异常服务进行深入诊断
性能分析流程
- 使用
execute_range_query获取时间序列数据 - 识别异常时间段
- 关联分析相关指标
- 生成根本原因假设
指标探索流程
- 通过
list_metrics发现可用指标 - 使用
get_metric_metadata理解指标含义 - 构建针对性查询
- 验证查询结果
PromQL查询模板库
基础设施监控
- 节点CPU使用率:
100 - (avg by (instance) (irate(node_cpu_seconds_total{mode="idle"}[5m])) * 100 - 磁盘空间预警:
(node_filesystem_avail_bytes{mountpoint="/"} * 100) / node_filesystem_size_bytes{mountpoint="/"} < 10
微服务监控
- 请求错误率:
sum(rate(http_requests_total{status=~"5.."}[5m])) by (service) / sum(rate(http_requests_total[5m])) by (service) - 请求延迟百分位:
histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))
Kubernetes专项查询
- 节点资源预留:
sum(kube_pod_container_resource_requests{resource="cpu"}) by (node) / sum(kube_node_status_capacity{resource="cpu"}) by (node) - Pod OOM分析:
increase(kube_pod_container_status_last_terminated_reason{reason="OOMKilled"}[1h]) > 0
高级使用技巧
-
时间参数优化:
- 短期诊断(<1小时):使用1m-5m的step值
- 中期趋势(1天):建议15m-1h的step值
- 长期分析(1周+):使用4h-1d的step值
-
查询性能调优:
- 避免在范围查询中使用大范围向量选择器(如
[1h]) - 复杂查询可拆分为多个简单查询
- 使用
recording rules预处理高频查询
- 避免在范围查询中使用大范围向量选择器(如
-
结果解读指南:
- Counter类型指标总是结合
rate()或increase()使用 - 注意指标单位的一致性(bytes vs MB vs GB)
- 识别采样间隔对结果的影响
- Counter类型指标总是结合
安全与权限管理
-
认证凭据通过环境变量传递,确保:
- 使用最小权限原则
- 定期轮换凭据
- 敏感查询需要额外授权
-
审计建议:
- 记录所有AI发起的查询
- 设置查询频率限制
- 监控异常查询模式
常见问题排查
-
查询超时:
- 简化查询复杂度
- 减小时间范围
- 增加step值
-
数据缺失:
- 确认指标名称正确
- 检查时间范围是否在保留期内
- 验证抓取目标是否健康
-
结果异常:
- 检查指标类型是否匹配操作
- 确认时间对齐问题
- 验证标签匹配是否正确
最佳实践建议
- 建立标准查询模板库
- 实现查询结果缓存机制
- 设置自动化数据质量检查
- 定期审查AI生成的查询语句
- 结合Grafana等可视化工具验证结果
通过合理使用Prometheus MCP Server,您可以将AI的分析能力与Prometheus的强大监控功能完美结合,显著提升监控效率和问题诊断能力。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1