PyTorch Forecasting项目中TFT模型输出NaN问题的分析与解决
问题背景
在使用PyTorch Forecasting库中的Temporal Fusion Transformer(TFT)模型进行时间序列预测时,开发者遇到了一个常见但棘手的问题:模型在预测阶段输出了全NaN(非数字)值。这种情况尤其在使用苹果M系列芯片(M1/M2)的Mac设备上更为常见。
现象描述
当开发者按照官方教程完整复制代码后,发现best_tft.predict()
方法返回的张量中所有值都是NaN。有趣的是,当将模型超参数如hidden_size
、attention_head_size
和hidden_continuous_size
都设置为1时,NaN问题消失,但预测性能显著下降。
根本原因分析
经过深入调查,这个问题与PyTorch在苹果M系列芯片(MPS后端)上的实现有关。具体来说:
-
MPS后端不完善:PyTorch对苹果M系列芯片的MPS(Metal Performance Shaders)支持仍在完善中,某些运算在特定条件下会产生NaN值。
-
数值稳定性问题:在复杂网络结构(如TFT)中,某些数学运算(如softmax、layer normalization等)在MPS后端可能因数值精度问题导致NaN传播。
-
参数规模影响:当模型参数规模较大时(即不使用1x1x1的简化配置),数值不稳定性更容易出现。
解决方案
目前有以下几种可行的解决方案:
- 启用MPS回退机制:在代码开头添加环境变量设置,强制PyTorch在某些运算不支持时回退到CPU:
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
- 完全禁用MPS:强制使用CPU进行计算(虽然会损失性能,但保证稳定性):
import torch
torch.set_default_device("cpu")
-
调整模型参数:减小模型复杂度,如降低隐藏层维度、注意力头大小等参数,但这会影响模型性能。
-
等待PyTorch更新:关注PyTorch官方更新,特别是对MPS后端的改进。
最佳实践建议
对于使用苹果M系列芯片的开发者和研究人员:
-
在模型开发阶段,建议先在CPU环境下验证模型正确性,再尝试MPS加速。
-
对于关键任务,考虑使用云GPU服务(如Colab)进行训练和推理。
-
定期更新PyTorch版本,苹果和PyTorch团队正在持续改进MPS支持。
-
在模型训练过程中添加NaN检查机制,及时发现并处理数值不稳定问题。
技术展望
随着PyTorch对苹果芯片支持的不断完善,这类问题有望在未来版本中得到根本解决。苹果芯片在机器学习领域的潜力巨大,当前的限制只是技术演进过程中的暂时性挑战。开发者社区和硬件厂商的持续合作将推动这一生态的成熟。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









