PyTorch Forecasting项目中TFT模型输出NaN问题的分析与解决
问题背景
在使用PyTorch Forecasting库中的Temporal Fusion Transformer(TFT)模型进行时间序列预测时,开发者遇到了一个常见但棘手的问题:模型在预测阶段输出了全NaN(非数字)值。这种情况尤其在使用苹果M系列芯片(M1/M2)的Mac设备上更为常见。
现象描述
当开发者按照官方教程完整复制代码后,发现best_tft.predict()方法返回的张量中所有值都是NaN。有趣的是,当将模型超参数如hidden_size、attention_head_size和hidden_continuous_size都设置为1时,NaN问题消失,但预测性能显著下降。
根本原因分析
经过深入调查,这个问题与PyTorch在苹果M系列芯片(MPS后端)上的实现有关。具体来说:
-
MPS后端不完善:PyTorch对苹果M系列芯片的MPS(Metal Performance Shaders)支持仍在完善中,某些运算在特定条件下会产生NaN值。
-
数值稳定性问题:在复杂网络结构(如TFT)中,某些数学运算(如softmax、layer normalization等)在MPS后端可能因数值精度问题导致NaN传播。
-
参数规模影响:当模型参数规模较大时(即不使用1x1x1的简化配置),数值不稳定性更容易出现。
解决方案
目前有以下几种可行的解决方案:
- 启用MPS回退机制:在代码开头添加环境变量设置,强制PyTorch在某些运算不支持时回退到CPU:
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
- 完全禁用MPS:强制使用CPU进行计算(虽然会损失性能,但保证稳定性):
import torch
torch.set_default_device("cpu")
-
调整模型参数:减小模型复杂度,如降低隐藏层维度、注意力头大小等参数,但这会影响模型性能。
-
等待PyTorch更新:关注PyTorch官方更新,特别是对MPS后端的改进。
最佳实践建议
对于使用苹果M系列芯片的开发者和研究人员:
-
在模型开发阶段,建议先在CPU环境下验证模型正确性,再尝试MPS加速。
-
对于关键任务,考虑使用云GPU服务(如Colab)进行训练和推理。
-
定期更新PyTorch版本,苹果和PyTorch团队正在持续改进MPS支持。
-
在模型训练过程中添加NaN检查机制,及时发现并处理数值不稳定问题。
技术展望
随着PyTorch对苹果芯片支持的不断完善,这类问题有望在未来版本中得到根本解决。苹果芯片在机器学习领域的潜力巨大,当前的限制只是技术演进过程中的暂时性挑战。开发者社区和硬件厂商的持续合作将推动这一生态的成熟。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00