Liger-Kernel v0.5.3版本发布:强化训练损失计算与KTO损失支持
Liger-Kernel是一个专注于深度学习模型训练优化的开源项目,特别针对大规模语言模型(LLM)的训练过程提供了多种高效实现。该项目包含了从基础算子优化到高级训练策略的完整工具链,能够显著提升模型训练效率。
本次发布的v0.5.3版本主要聚焦于训练损失计算的改进和新增功能支持,特别是对后训练阶段损失计算的优化以及新增了KTO(Kullback-Leibler Temperature Optimization)损失函数的支持。这些改进使得模型在微调和优化阶段能够获得更好的性能表现。
核心改进与优化
1. 后训练损失计算的全面优化
本次版本对多种后训练损失计算进行了重要修复和优化:
- 修正了ORPO(Optimal Regularized Preference Optimization)损失在MOE(Mixture of Experts)模型中的计算问题,确保了在多专家模型架构下的正确性
- 修复了chosen_nll_loss在分块损失计算中的问题,提高了负对数似然损失计算的准确性
- 为CPO和SimPO损失函数增加了标签平滑(label_smoothing)支持,使模型训练更加稳定
- 改进了DPO(Direct Preference Optimization)损失的计算,现在可以输出参考模型的log概率,便于更细致的分析
这些改进使得后训练阶段的损失计算更加精确可靠,为模型微调提供了更坚实的基础。
2. KTO损失函数的引入
v0.5.3版本新增了KTO(Kullback-Leibler Temperature Optimization)损失函数的支持。KTO是一种基于KL散度的优化方法,通过温度调节来控制模型输出分布与目标分布之间的差异。这种损失函数特别适用于需要精确控制模型生成内容特性的场景,如对话系统的风格控制、内容安全过滤等。
KTO损失的主要特点包括:
- 通过KL散度直接优化模型输出分布
- 温度参数可调节,灵活控制优化强度
- 与现有训练框架无缝集成
3. 交叉熵损失的增强与优化
对核心的交叉熵损失计算进行了多项改进:
- 增加了权重支持(weight参数),允许对不同类别的样本赋予不同重要性
- 修复了AMP(自动混合精度)训练中的dtype不匹配问题
- 优化了z_loss的处理逻辑,避免在某些情况下出现存储失败
- 重构了FusedLinearCrossEntropy实现,提高了计算效率
这些改进使得交叉熵损失在大规模训练中更加稳定高效。
4. 其他重要改进
- 为CPO和SimPO损失增加了辅助输出(aux_outputs)支持,便于获取更多训练信息
- 优化了温度缩放(Temperature Scaling)在蒸馏损失中的实现
- 改进了Rope(Rotary Position Embedding)与Cos/Sin位置编码在批量大小>1时的兼容性
- 增加了JSD(Jensen-Shannon Divergence)损失支持,丰富了知识蒸馏的选择
开发者体验提升
除了功能上的改进,v0.5.3版本也注重提升开发者体验:
- 将代码检查工具迁移到Ruff,提供了更快的静态分析和更一致的代码风格
- 完善了文档系统,新增了Mkdocs支持,使文档更加易读易用
- 修复了多项测试问题,提高了测试覆盖率
- 优化了CUDA和ROCm的动态依赖管理,简化了安装过程
总结
Liger-Kernel v0.5.3版本通过一系列精细的损失计算优化和新功能引入,进一步强化了其在深度学习训练领域的优势。特别是对后训练阶段损失计算的改进和KTO损失的支持,为研究人员和工程师提供了更强大的工具来优化模型性能。
这些改进不仅提升了训练过程的稳定性和效率,也为探索更先进的训练策略提供了可能。对于正在使用或考虑使用Liger-Kernel进行大规模模型训练的用户,升级到v0.5.3版本将能够获得更优的训练体验和模型质量。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00