Docling项目表格提取功能优化与使用技巧
2025-05-06 00:32:42作者:江焘钦
表格提取功能概述
Docling是一个强大的文档处理工具,特别擅长从PDF等格式文档中提取结构化数据。其核心功能之一就是表格提取,能够将文档中的表格内容转换为可操作的数据框(DataFrame)格式。这一功能对于数据分析、文档自动化处理等场景尤为重要。
常见问题分析
在实际使用过程中,用户可能会遇到表格内容提取不完整或格式错乱的情况。这通常由以下几个因素导致:
- PDF文档结构复杂性:某些PDF文档中的表格并非标准的表格结构,而是由线条和文本框组合而成
- 多行文本处理:单元格内包含换行符或分页符时,可能导致提取结果分散在不同行
- 字体和布局差异:特殊字体或非常规布局可能影响识别准确性
解决方案与优化建议
Docling项目在v2.26.0版本中对表格模型进行了重要更新:
- 权重算法优化:新版改进了表格识别的权重计算方式,能更准确地判断表格边界和单元格关系
- 多行文本合并:增强了对跨行文本的处理能力,减少内容分散的情况
- 格式兼容性提升:支持更多样化的PDF表格结构识别
实际应用示例
以下是一个典型的使用代码示例,展示了如何配置Docling进行表格提取:
from docling.datamodel.base_models import InputFormat
from docling.document_converter import (
DocumentConverter,
PdfFormatOption,
)
# 配置PDF处理选项
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = False # 适用于非扫描文档
pipeline_options.do_table_structure = True # 启用表格结构识别
# 创建文档转换器实例
doc_converter = DocumentConverter(
allowed_formats=[InputFormat.PDF],
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
backend=PyPdfiumDocumentBackend
)
}
)
# 执行转换并获取结果
result = doc_converter.convert("sample.pdf")
# 导出表格为DataFrame
for i, table in enumerate(result.document.tables):
df = table.export_to_dataframe()
df.to_excel(f'table_{i}.xlsx')
最佳实践建议
- 预处理文档:确保PDF文档质量良好,避免使用扫描件或低分辨率文档
- 版本控制:始终使用最新版Docling,以获取最佳的表格识别效果
- 结果验证:对提取结果进行人工校验,特别是关键数据字段
- 参数调优:根据文档特点调整pipeline_options中的各项参数
未来发展方向
Docling项目团队持续优化表格提取功能,未来可能会加入以下改进:
- 深度学习模型增强复杂表格识别能力
- 支持更多文档格式的表格提取
- 提供更灵活的结果后处理选项
- 增加表格样式保留功能
通过合理配置和正确使用,Docling能够成为文档自动化处理流程中的强大工具,显著提高数据提取的效率和准确性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355