PyTriton 使用教程
2024-08-17 16:30:26作者:董宙帆
项目介绍
PyTriton 是一个类似于 Flask/FastAPI 的接口,简化了 Triton 在 Python 环境中的部署。该库允许通过 NVIDIA 的 Triton Inference Server 直接从 Python 服务机器学习模型。PyTriton 支持多种操作系统,包括 Debian 11+、Rocky Linux 9+ 和 Red Hat UBI 9+。
项目快速启动
安装
PyTriton 可以通过 pip 安装,执行以下命令:
pip install nvidia-pytriton
快速启动示例
以下是一个简单的示例,展示如何在 Triton Inference Server 中运行 Python 模型:
from pytriton.decorators import batch
from pytriton.model_config import ModelConfig, Tensor
from pytriton.triton import Triton
import numpy as np
@batch
def infer_fn(**inputs):
input_data = inputs["input"]
# 模型推理逻辑
output_data = np.square(input_data)
return {"output": output_data}
with Triton() as triton:
triton.bind(
model_name="SquareModel",
infer_func=infer_fn,
inputs=[Tensor(name="input", dtype=np.float32, shape=(-1,))],
outputs=[Tensor(name="output", dtype=np.float32, shape=(-1,))],
config=ModelConfig(max_batch_size=128),
)
triton.run()
应用案例和最佳实践
应用案例
PyTriton 可以用于各种机器学习模型的部署,例如图像识别、自然语言处理等。以下是一个图像识别的示例:
from pytriton.decorators import batch
from pytriton.model_config import ModelConfig, Tensor
from pytriton.triton import Triton
import numpy as np
import cv2
@batch
def infer_fn(**inputs):
images = inputs["images"]
# 预处理图像
processed_images = [cv2.resize(img, (224, 224)) for img in images]
processed_images = np.array(processed_images)
# 模型推理逻辑
output_data = model.predict(processed_images)
return {"output": output_data}
with Triton() as triton:
triton.bind(
model_name="ImageRecognitionModel",
infer_func=infer_fn,
inputs=[Tensor(name="images", dtype=np.uint8, shape=(-1, -1, 3))],
outputs=[Tensor(name="output", dtype=np.float32, shape=(-1,))],
config=ModelConfig(max_batch_size=32),
)
triton.run()
最佳实践
- 批处理优化:使用
@batch装饰器进行批处理,提高推理效率。 - 模型配置:合理设置
ModelConfig中的参数,如max_batch_size,以适应不同的推理需求。 - 错误处理:在
infer_fn中添加错误处理逻辑,确保服务的稳定性。
典型生态项目
PyTriton 可以与其他 NVIDIA 生态项目结合使用,例如:
- NVIDIA TensorRT:用于优化深度学习模型,提高推理速度。
- NVIDIA DALI:用于数据预处理,加速数据加载和增强。
- NVIDIA Triton Inference Server:提供高性能的推理服务。
通过这些生态项目的结合,可以构建一个高效、稳定的机器学习推理服务系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134