BentoML v1.3.20 版本发布:服务稳定性与兼容性提升
BentoML 是一个开源的机器学习模型服务框架,它帮助数据科学家和工程师将训练好的模型快速打包、部署为可扩展的预测服务。BentoML 支持多种机器学习框架,提供了从开发到生产环境的完整工作流。
本次发布的 v1.3.20 版本主要聚焦于提升服务稳定性和系统兼容性,包含多项重要改进和问题修复。
核心改进
服务稳定性增强
-
守护线程设置:修复了仲裁器(arbiter)线程的守护状态问题。现在该线程被明确设置为守护线程,确保在主线程退出时能够正确终止,避免了潜在的僵尸线程问题。
-
服务清理钩子日志:为新型BentoML服务增加了服务清理钩子的日志记录功能。这项改进使得开发者能够更好地追踪服务生命周期中的清理过程,便于调试和问题排查。
-
请求计数初始化:API的请求计数指标现在会初始化为零,解决了指标系统可能出现的初始状态不一致问题,为监控提供了更准确的基础数据。
兼容性优化
-
构建平台指定:构建过程现在使用特定版本的manylinux作为构建平台,显著提升了生成二进制文件的兼容性,减少了在不同Linux发行版上运行时可能出现的问题。
-
distutils依赖移除:移除了对已弃用的distutils库的依赖,转而使用更现代的替代方案,为Python生态的未来兼容性做好准备。
-
构建配置灵活性:现在允许在没有构建配置文件的情况下构建Bento,为简单场景提供了更大的灵活性。
使用体验改进
-
部署命令简化:现在支持更简洁的部署命令语法,如
bentoml deploy service:MyService,提高了开发者的工作效率。 -
Jupyter环境检测:改进了在Jupyter notebook环境中的分析功能检测机制,使用更可靠的判断方法。
文档更新
-
新增了ComfyUI示例文档,帮助开发者了解如何将BentoML与ComfyUI结合使用。
-
更新了流式处理和WebSocket相关文档,更全面地覆盖了实时交互场景。
-
完善了ASGI装饰器的文档说明,使开发者能更清晰地理解和使用这一功能。
-
更新了Gradio示例链接,确保开发者能获取最新的集成示例。
总结
BentoML v1.3.20版本虽然没有引入重大新功能,但在稳定性、兼容性和使用体验方面做出了多项重要改进。这些变化使得BentoML在生产环境中的表现更加可靠,同时也降低了开发者的使用门槛。特别是对构建系统和部署流程的优化,将直接提升团队的工作效率。
对于现有用户,建议升级到此版本以获得更好的稳定性和兼容性。新用户也可以从这个版本开始,体验更加完善的BentoML功能生态。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00