在reid_baseline项目中训练AGW模型时loss不下降的解决方案
2025-06-20 09:33:45作者:咎岭娴Homer
问题背景
在基于reid_baseline项目进行行人重识别(ReID)模型训练时,使用AGW_R50-ibn.yml配置文件进行训练,发现模型性能表现极差,loss值基本不下降。具体表现为:
- Rank-1准确率仅为2.70%
- mAP值低至0.98
- 训练过程中loss值维持在40左右,无明显下降趋势
问题分析
通过查看训练日志和代码实现,发现该问题与优化器参数设置有关。在reid_baseline项目中,构建优化器时有一个关键参数contiguous,默认情况下该参数未被正确设置,导致优化器无法有效更新模型参数。
解决方案
在build_optimizer函数中,需要将contiguous参数显式设置为False。这个参数控制着优化器如何处理模型参数的内存布局:
def build_optimizer(cfg, model, contiguous=False):
params = get_default_optimizer_params(
model,
base_lr=cfg.SOLVER.BASE_LR,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR,
heads_lr_factor=cfg.SOLVER.HEADS_LR_FACTOR,
weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS,
freeze_layers=cfg.MODEL.FREEZE_LAYERS if cfg.SOLVER.FREEZE_ITERS > 0 else [],
)
技术原理
contiguous参数在深度学习优化过程中起着重要作用:
- 内存连续性:当设置为False时,优化器会处理非连续内存的参数张量,这在某些模型架构中很常见
- 梯度更新效率:正确的内存布局设置可以确保梯度更新操作高效执行
- 参数分组:影响优化器对不同参数组(如权重、偏置等)的学习率调整策略
在行人重识别任务中,模型通常包含多个分支和复杂的参数结构,因此正确处理参数的内存连续性对训练效果至关重要。
实践建议
- 检查优化器配置:在使用reid_baseline项目时,务必确认
build_optimizer函数的调用方式 - 监控训练过程:关注loss下降曲线和验证集指标,及时发现训练异常
- 参数调优:在解决基础训练问题后,可进一步调整学习率、权重衰减等超参数
- 模型分析:对于复杂模型结构,建议逐步验证各组件是否正常参与训练
总结
在深度学习项目实践中,优化器配置细节往往容易被忽视,但却可能对训练效果产生决定性影响。reid_baseline项目中AGW模型训练问题的解决,提醒我们在模型开发过程中需要全面考虑各个组件的配置细节,特别是与优化相关的参数设置。通过正确配置优化器参数,可以确保模型参数得到有效更新,从而获得理想的训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868