thuthesis模板中图片标题与说明文字的排版技巧
引言
在学术论文写作中,图片和表格的排版规范是至关重要的环节。thuthesis作为清华大学学位论文的LaTeX模板,对图表排版有着明确的要求。本文将深入探讨如何在thuthesis模板中实现图片标题与说明文字的不同排版方式,特别是针对生物医学工程等学科的特殊需求。
传统排版方式的问题
thuthesis模板文档中明确指出:"国外的期刊习惯将图表的标题和说明文字写成一段,需要改写为标题只含图表的名称,其他说明文字以注释方式写在图表下方,或者写在正文中。"这种要求主要是为了符合国内学位论文的规范格式。
然而,在实际应用中,特别是对于生物医学工程等与国际期刊接轨较为紧密的学科,许多研究者更习惯于采用国际期刊的排版风格——将图片标题和详细说明合并为一段文字。这种排版方式在视觉上更为紧凑,也符合相关领域研究者的阅读习惯。
解决方案的实现
经过对LaTeX的caption宏包的深入研究,我们发现可以通过以下方式在thuthesis模板中实现国际期刊风格的图片排版:
\begin{figure}
\centering
\includegraphics[width=0.5\linewidth]{example-image-a.pdf}
\caption[简短的图片标题]{完整的图片标题和详细说明文字。这里可以包含对图片的详细解释,
包括图中各个部分的含义、实验条件、数据来源等所有必要信息。}
\label{fig:example}
\end{figure}
这种写法的核心在于利用了caption宏包提供的可选参数功能:
- 方括号
[]中的内容是出现在图片目录中的简短标题 - 大括号
{}中的内容则是显示在图片下方的完整标题和说明文字
技术原理分析
这种实现方式背后的技术原理是LaTeX的caption宏包对\caption命令的重定义。caption宏包允许用户通过可选参数来区分目录条目和实际显示的标题内容。
在thuthesis模板中,默认的图片标题样式是通过定义\caption命令的格式来实现的。当我们使用上述方法时:
- 模板会自动将方括号中的内容用于生成图片目录
- 同时保留大括号中的所有内容作为图片下方的完整说明
这种机制既满足了学校对图片目录简洁性的要求,又保留了研究者需要的详细说明文字。
实际应用建议
对于需要在thuthesis模板中使用国际期刊风格的研究者,我们建议:
-
保持一致性:整篇论文中应统一使用同一种图片说明格式,不要混合使用不同风格
-
说明文字规范:详细的说明文字应当包含足够的信息量,但也要避免过度冗长。通常应包括:
- 图片的核心内容描述
- 关键参数或条件
- 重要的标注解释
- 必要的参考文献引用
-
目录标题优化:方括号中的简短标题应当精炼且具有代表性,便于读者通过目录快速定位图片
-
跨学科协调:如果所在院系有特殊要求,建议提前与导师或学位委员会确认这种排版方式的可接受性
扩展应用
同样的技术也可以应用于表格的排版中:
\begin{table}
\centering
\caption[数据统计简表]{实验数据统计表。表中列出了三组实验在不同条件下的测量结果,
包括平均值、标准差和显著性水平(p值)。数据采集自2023年1月至6月期间进行的系列实验。}
\label{tab:stats}
\begin{tabular}{ccc}
% 表格内容
\end{tabular}
\end{table}
这种灵活的排版方式大大增强了学术论文的表达能力,使作者可以在遵守基本规范的同时,根据实际需要调整说明文字的详细程度。
结论
thuthesis模板虽然对图表排版有明确规范,但通过合理利用LaTeX的caption宏包功能,研究者仍然可以实现符合国际期刊习惯的图片说明排版风格。这种技术方案既尊重了学校的格式要求,又兼顾了学科特点和作者的表达需求,是学术论文写作中值得掌握的实用技巧。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00