Qwen-VL项目中LoRA训练与全参数保存的技术实现
2025-06-05 05:30:15作者:龚格成
背景介绍
在大型语言模型微调过程中,LoRA(Low-Rank Adaptation)是一种高效且节省资源的参数微调方法。它通过在原始模型参数旁添加低秩矩阵来实现微调,而不改变原始模型参数。然而,在某些应用场景下,开发者可能希望在LoRA训练的同时保留完整模型的参数更新能力。
LoRA训练的基本原理
LoRA技术通过在Transformer层的注意力机制中引入两个低秩矩阵(通常记为A和B)来实现微调。在标准实现中,训练完成后只保存这些低秩适配器的权重,原始模型参数保持不变。这种方法的优势在于:
- 显著减少需要训练的参数数量
- 便于模型切换和部署
- 节省存储空间
全参数保存的需求场景
在某些特殊情况下,开发者可能需要:
- 同时微调LoRA适配器和部分原始模型参数
- 保留完整的模型状态而不仅仅是适配器
- 实现更灵活的模型组合和迁移
技术实现方案
方案一:手动参数保存与加载
通过遍历模型的所有可训练参数,开发者可以手动保存这些参数到文件:
to_save = {
f"{name}.{param_name}": param.detach().cpu()
for name, module in model.named_modules()
for param_name, param in module.named_parameters()
if param.requires_grad
}
torch.save(to_save, 'output_dir/lora_adapter_model.pth')
加载时则需要先加载基础模型,再加载保存的参数:
saved_parameters = torch.load('output_dir/lora_adapter_model.pth')
model.load_state_dict(saved_parameters, strict=False)
这种方法提供了最大的灵活性,但需要开发者对模型结构有深入了解。
方案二:使用modules_to_save参数
Qwen-VL项目提供了更简便的modules_to_save参数来实现这一需求。通过指定需要额外保存的模块,可以在LoRA训练的同时更新这些模块的参数:
# 示例配置
modules_to_save = [
"transformer.wte", # 词嵌入层
"lm_head" # 语言模型头部
]
其中:
transformer.wte代表词嵌入层(Word Token Embeddings)lm_head代表语言模型的任务特定头部(Language Model Head)
关键模块解析
-
词嵌入层(wte):负责将输入token转换为向量表示,对模型理解输入内容至关重要。
-
语言模型头部(lm_head):将隐藏状态转换为词汇表上的概率分布,直接影响模型的生成质量。
通过微调这些关键模块,可以在保持LoRA高效性的同时,获得更精细的控制能力。
实际应用建议
- 对于大多数场景,标准LoRA训练已经足够
- 当需要调整模型的基础表示能力时,可考虑添加词嵌入层
- 当生成质量需要特别优化时,可包含语言模型头部
- 全参数保存会显著增加存储需求,应谨慎使用
总结
Qwen-VL项目提供了灵活的参数微调方案,开发者可以根据具体需求选择纯LoRA训练或结合部分原始参数更新的混合模式。通过合理配置modules_to_save参数,可以在资源消耗和模型性能之间取得平衡。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1