Qwen-VL项目中LoRA训练与全参数保存的技术实现
2025-06-05 09:44:40作者:龚格成
背景介绍
在大型语言模型微调过程中,LoRA(Low-Rank Adaptation)是一种高效且节省资源的参数微调方法。它通过在原始模型参数旁添加低秩矩阵来实现微调,而不改变原始模型参数。然而,在某些应用场景下,开发者可能希望在LoRA训练的同时保留完整模型的参数更新能力。
LoRA训练的基本原理
LoRA技术通过在Transformer层的注意力机制中引入两个低秩矩阵(通常记为A和B)来实现微调。在标准实现中,训练完成后只保存这些低秩适配器的权重,原始模型参数保持不变。这种方法的优势在于:
- 显著减少需要训练的参数数量
- 便于模型切换和部署
- 节省存储空间
全参数保存的需求场景
在某些特殊情况下,开发者可能需要:
- 同时微调LoRA适配器和部分原始模型参数
- 保留完整的模型状态而不仅仅是适配器
- 实现更灵活的模型组合和迁移
技术实现方案
方案一:手动参数保存与加载
通过遍历模型的所有可训练参数,开发者可以手动保存这些参数到文件:
to_save = {
f"{name}.{param_name}": param.detach().cpu()
for name, module in model.named_modules()
for param_name, param in module.named_parameters()
if param.requires_grad
}
torch.save(to_save, 'output_dir/lora_adapter_model.pth')
加载时则需要先加载基础模型,再加载保存的参数:
saved_parameters = torch.load('output_dir/lora_adapter_model.pth')
model.load_state_dict(saved_parameters, strict=False)
这种方法提供了最大的灵活性,但需要开发者对模型结构有深入了解。
方案二:使用modules_to_save参数
Qwen-VL项目提供了更简便的modules_to_save参数来实现这一需求。通过指定需要额外保存的模块,可以在LoRA训练的同时更新这些模块的参数:
# 示例配置
modules_to_save = [
"transformer.wte", # 词嵌入层
"lm_head" # 语言模型头部
]
其中:
transformer.wte代表词嵌入层(Word Token Embeddings)lm_head代表语言模型的任务特定头部(Language Model Head)
关键模块解析
-
词嵌入层(wte):负责将输入token转换为向量表示,对模型理解输入内容至关重要。
-
语言模型头部(lm_head):将隐藏状态转换为词汇表上的概率分布,直接影响模型的生成质量。
通过微调这些关键模块,可以在保持LoRA高效性的同时,获得更精细的控制能力。
实际应用建议
- 对于大多数场景,标准LoRA训练已经足够
- 当需要调整模型的基础表示能力时,可考虑添加词嵌入层
- 当生成质量需要特别优化时,可包含语言模型头部
- 全参数保存会显著增加存储需求,应谨慎使用
总结
Qwen-VL项目提供了灵活的参数微调方案,开发者可以根据具体需求选择纯LoRA训练或结合部分原始参数更新的混合模式。通过合理配置modules_to_save参数,可以在资源消耗和模型性能之间取得平衡。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1