在adapter-transformers中使用EncoderDecoderModel与适配器的技术解析
2025-06-29 04:57:35作者:卓艾滢Kingsley
adapter-transformers项目为Hugging Face Transformers模型提供了适配器(Adapter)支持,使得用户能够在不修改原始模型参数的情况下,通过添加小型神经网络模块来实现模型功能的扩展。本文将重点探讨如何在Encoder-Decoder架构模型中使用适配器技术。
EncoderDecoderModel适配器支持问题
近期有用户反馈,在尝试按照官方文档示例使用EncoderDecoderModel时遇到了模块导入错误。具体表现为当执行以下代码时:
from transformers import EncoderDecoderModel
import adapters
model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
adapters.init(model)
系统会抛出"ModuleNotFoundError: No module named 'adapters.models.encoder_decoder'"错误。经项目维护者确认,这是一个意外的代码回归问题,本应正常工作的功能出现了异常。
临时解决方案
在官方修复此问题前,开发者可以采用以下替代方案:
- 分别初始化编码器和解码器:先为编码器和解码器分别添加适配器,再组合成EncoderDecoderModel
from adapters import BertAdapterModel, BnConfig
# 初始化编码器
encoder = BertAdapterModel.from_pretrained("bert-base-uncased")
config = BnConfig(mh_adapter=True, output_adapter=True, reduction_factor=16, non_linearity="relu")
encoder.add_adapter("encoder_adapter", config=config)
# 初始化解码器
decoder = BertAdapterModel.from_pretrained("bert-base-uncased")
decoder.add_adapter("decoder_adapter", config=config)
# 组合成EncoderDecoderModel
model = EncoderDecoderModel(encoder=encoder, decoder=decoder)
- 使用原生支持适配器的模型:如BartAdapterModel等已经内置适配器支持的模型
技术细节说明
值得注意的是,当使用AdapterModel类(如BertAdapterModel)时,不需要显式调用adapters.init(),因为这些类已经自动初始化了所有适配器功能。这种设计使得适配器的使用更加便捷。
对于EncoderDecoderModel这类复合模型,适配器的管理需要分别处理编码器和解码器部分。这意味着所有适配器相关操作(添加、加载、保存、激活等)都需要分别对编码器和解码器模型调用。
问题修复状态
项目维护团队已经确认并修复了这个问题。用户现在可以通过安装项目的主分支版本来获得修复后的功能。这一修复确保了文档中的示例代码能够正常工作,简化了在Encoder-Decoder架构中使用适配器的流程。
适配器技术为大型预训练模型提供了高效的任务适应能力,特别是在需要轻量级调整的场景下。通过本文介绍的方法,开发者可以灵活地在各种模型架构中应用这一技术。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197