在adapter-transformers中使用EncoderDecoderModel与适配器的技术解析
2025-06-29 15:26:18作者:卓艾滢Kingsley
adapter-transformers项目为Hugging Face Transformers模型提供了适配器(Adapter)支持,使得用户能够在不修改原始模型参数的情况下,通过添加小型神经网络模块来实现模型功能的扩展。本文将重点探讨如何在Encoder-Decoder架构模型中使用适配器技术。
EncoderDecoderModel适配器支持问题
近期有用户反馈,在尝试按照官方文档示例使用EncoderDecoderModel时遇到了模块导入错误。具体表现为当执行以下代码时:
from transformers import EncoderDecoderModel
import adapters
model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
adapters.init(model)
系统会抛出"ModuleNotFoundError: No module named 'adapters.models.encoder_decoder'"错误。经项目维护者确认,这是一个意外的代码回归问题,本应正常工作的功能出现了异常。
临时解决方案
在官方修复此问题前,开发者可以采用以下替代方案:
- 分别初始化编码器和解码器:先为编码器和解码器分别添加适配器,再组合成EncoderDecoderModel
from adapters import BertAdapterModel, BnConfig
# 初始化编码器
encoder = BertAdapterModel.from_pretrained("bert-base-uncased")
config = BnConfig(mh_adapter=True, output_adapter=True, reduction_factor=16, non_linearity="relu")
encoder.add_adapter("encoder_adapter", config=config)
# 初始化解码器
decoder = BertAdapterModel.from_pretrained("bert-base-uncased")
decoder.add_adapter("decoder_adapter", config=config)
# 组合成EncoderDecoderModel
model = EncoderDecoderModel(encoder=encoder, decoder=decoder)
- 使用原生支持适配器的模型:如BartAdapterModel等已经内置适配器支持的模型
技术细节说明
值得注意的是,当使用AdapterModel类(如BertAdapterModel)时,不需要显式调用adapters.init(),因为这些类已经自动初始化了所有适配器功能。这种设计使得适配器的使用更加便捷。
对于EncoderDecoderModel这类复合模型,适配器的管理需要分别处理编码器和解码器部分。这意味着所有适配器相关操作(添加、加载、保存、激活等)都需要分别对编码器和解码器模型调用。
问题修复状态
项目维护团队已经确认并修复了这个问题。用户现在可以通过安装项目的主分支版本来获得修复后的功能。这一修复确保了文档中的示例代码能够正常工作,简化了在Encoder-Decoder架构中使用适配器的流程。
适配器技术为大型预训练模型提供了高效的任务适应能力,特别是在需要轻量级调整的场景下。通过本文介绍的方法,开发者可以灵活地在各种模型架构中应用这一技术。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248