Dinky项目中的FlinkAPI地址拼接问题分析与修复
问题背景
在Dinky项目的1.2.0版本中,用户在使用savepoint功能时遇到了"String index out of range 0"异常。这个问题主要发生在触发savepoint并取消作业的操作过程中,导致任务无法正常执行。
问题分析
经过技术团队深入排查,发现问题根源在于dinky-core模块中的FlinkAPI.java文件。具体来说,是在构建HTTP请求URL时出现了地址拼接错误。
在原始代码中,URL构建逻辑如下:
private JsonNode post(String route, String body) {
String url = NetConstant.SLASH + route;
if (!address.startsWith(NetConstant.HTTP) && !address.startsWith(NetConstant.HTTPS)) {
url = NetConstant.HTTP + url;
}
String res = HttpUtil.post(url, body, NetConstant.SERVER_TIME_OUT_ACTIVE);
return parse(res);
}
这段代码存在两个主要问题:
-
地址丢失:在构建URL时,没有包含
address变量,直接使用了NetConstant.SLASH + route,导致最终生成的URL不完整。 -
协议处理不当:虽然代码中有检查地址是否以HTTP/HTTPS开头的逻辑,但由于地址丢失,这个检查实际上没有起到应有的作用。
技术影响
这个bug会导致以下技术问题:
-
所有通过
post方法发起的Flink API调用都会失败,因为生成的URL格式不正确。 -
特别影响savepoint相关操作,因为这些操作依赖于正确的API调用。
-
错误处理不够友好,用户只能看到"String index out of range 0"这样的底层异常,难以定位问题根源。
解决方案
技术团队提出了明确的修复方案:
-
正确拼接URL:在构建URL时,应该包含完整的地址信息,即
address + NetConstant.SLASH + route。 -
保持协议处理逻辑:原有的协议检查逻辑仍然保留,确保生成的URL始终具有正确的协议前缀。
修复后的代码如下:
private JsonNode post(String route, String body) {
String url = address + NetConstant.SLASH + route;
if (!url.startsWith(NetConstant.HTTP) && !url.startsWith(NetConstant.HTTPS)) {
url = NetConstant.HTTP + url;
}
String res = HttpUtil.post(url, body, NetConstant.SERVER_TIME_OUT_ACTIVE);
return parse(res);
}
技术启示
这个案例给我们带来以下技术启示:
-
URL构建要规范:在构建HTTP请求URL时,必须确保包含完整的协议、主机地址和路径信息。
-
错误处理要完善:对于API调用,应该添加更详细的错误日志和友好的错误提示,帮助用户快速定位问题。
-
单元测试的重要性:这类URL构建问题完全可以通过单元测试提前发现,建议增加相关测试用例。
-
代码审查要点:在代码审查时,应该特别关注字符串拼接和URL构建这类看似简单但容易出错的操作。
总结
Dinky项目中这个看似简单的URL拼接问题,实际上反映了API调用基础组件的重要性。通过这次修复,不仅解决了savepoint功能的问题,也完善了项目中Flink API调用的基础架构。对于开发者而言,这个案例提醒我们在处理网络请求时要格外注意细节,确保每个组件都能正确工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00