Microsoft MLOps 开源项目实战指南
2024-08-25 00:01:25作者:牧宁李
一、项目目录结构及介绍
Microsoft的MLOps项目是一个致力于优化机器学习生命周期管理的框架。以下是对该项目典型目录结构的概述:
microsoft/MLOps/
|-- src # 项目主要源代码存放目录
| |-- main.py # 启动文件,通常是应用程序的入口点
| |-- ml_ops # 包含机器学习操作相关的模块和脚本
| |-- training # 训练相关脚本和函数
| |-- deployment # 部署逻辑和配置
| |-- monitoring # 监控与日志记录组件
|-- config # 配置文件目录
| |-- settings.yaml # 核心配置文件,定义环境变量和默认设置
|-- data # 示例数据或数据预处理脚本
|-- scripts # 辅助脚本,如数据清洗、实验设置等
|-- docs # 项目文档和说明
|-- tests # 自动化测试文件夹
|-- requirements.txt # Python依赖库列表
|-- README.md # 项目介绍和快速入门指南
此结构体现了清晰的分层设计,便于团队协作和项目的可维护性。
二、项目的启动文件介绍
main.py
main.py是项目的起始执行点,它通常负责初始化应用程序上下文,调用核心的机器学习流程,比如数据加载、模型训练、评估、部署等。示例代码结构可能如下:
if __name__ == '__main__':
# 加载配置
config = load_config('config/settings.yaml')
# 数据准备
data = prepare_data()
# 模型训练
model = train_model(data, config)
# 部署模型
deploy_model(model, config)
这段简单的流程展示了如何根据配置文件启动完整的机器学习工作流程。
三、项目的配置文件介绍
config/settings.yaml
配置文件settings.yaml是项目的核心配置所在,允许开发者或运维人员定制化项目的行为,通常包括以下几个部分:
# 环境设置
environment:
python_version: "3.8"
# 数据路径
data_path: "./data/raw"
# 训练参数
training:
batch_size: 32
epochs: 100
# 部署选项
deployment:
endpoint: "ml-service-endpoint"
service_account: "mlservice-account"
# 日志与监控
logging:
level: "INFO"
path: "./logs/"
这些配置使得无需修改代码即可调整不同环境下的行为,提供了灵活性和可扩展性。
通过上述指南,你可以快速理解和上手Microsoft MLOps项目,调整配置以适应自己的机器学习项目需求,有效地管理和优化你的机器学习生命周期。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19