Requests库中Transfer-Encoding头被忽略的问题分析
在Python的Requests库使用过程中,开发者可能会遇到一个特殊问题:当尝试通过headers参数设置Transfer-Encoding头时,该设置会被库忽略。这个问题在Requests 2.28.1版本中表现尤为明显。
问题现象
开发者期望发送一个包含Transfer-Encoding: chunked头的HTTP请求,请求体采用分块传输编码格式。理想情况下,请求应该包含以下关键元素:
POST /test.php HTTP/1.1
Host: example.com
Transfer-Encoding: chunked
Content-Type: application/x-www-form-urlencoded
7
param=2
然而实际发送的请求中,Transfer-Encoding头完全缺失,取而代之的是Content-Length头:
POST /test.php HTTP/1.1
Host: example.com
Content-Length: 12
7
param=2
问题原因
这个问题的根源在于Requests库的内部处理机制。Requests库对某些特定的HTTP头有特殊处理逻辑,Transfer-Encoding就是其中之一。库的设计者认为传输编码应该由库自身根据请求体的特性自动决定,而不是由开发者手动指定。
具体来说,Requests库在准备请求时会对headers进行过滤和处理。当检测到开发者尝试设置Transfer-Encoding头时,库会忽略这个设置,转而根据请求体的类型自动决定是否使用分块传输编码。
解决方案
对于需要精确控制传输编码的开发者,可以考虑以下几种解决方案:
-
升级Requests库:新版本可能已经改进了这方面的处理逻辑。虽然问题报告者使用的是2.28.1版本,但最新版本可能已经解决了这个问题。
-
使用更底层的HTTP库:如果需要完全控制HTTP请求的各个方面,可以考虑使用urllib3等更底层的库。
-
修改请求体处理方式:Requests库会自动为生成器类型的请求体启用分块传输编码。开发者可以确保data参数是一个生成器函数,这样库会自动处理分块传输。
技术背景
分块传输编码(Chunked Transfer Encoding)是HTTP/1.1中定义的一种数据传输机制。它允许服务器在不知道内容长度的情况下开始发送响应。每个分块包含一个十六进制表示的长度值,后跟分块数据。
在Requests库中,当请求体是一个生成器或迭代器时,库会自动启用分块传输编码,因为在这种情况下无法预先确定内容长度。这是库提供的一个便利特性,旨在简化开发者的工作。
最佳实践
对于大多数使用场景,建议开发者:
- 信任Requests库的自动处理机制
- 避免手动设置Transfer-Encoding头
- 当需要分块传输时,直接提供生成器作为请求体
- 保持库版本更新以获取最佳兼容性
通过理解库的设计哲学和内部机制,开发者可以更好地利用Requests库的强大功能,同时避免类似问题的发生。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00