JeecgBoot项目中实现多Sheet的Map数据导出方案
在JeecgBoot 3.6.1版本中,开发者经常需要处理复杂的数据导出需求,特别是需要将不同类型的数据分别导出到Excel的不同Sheet页中。本文将详细介绍如何基于JeecgBoot框架实现多Sheet导出功能,其中每个Sheet使用Map数据结构作为数据源。
多Sheet导出的核心原理
JeecgBoot的Excel导出功能基于Spring MVC的视图解析机制,通过NormalExcelConstants.JEECG_EXCEL_VIEW
视图实现。多Sheet导出的关键在于构建正确的模型数据,包括:
- 每个Sheet的配置信息
- 每个Sheet对应的数据集合
- 导出参数设置
实现步骤详解
1. 准备导出数据结构
首先需要创建一个包含多个Sheet信息的列表,每个Sheet信息包含三个关键元素:
List<Map<String, Object>> exportParamList = Lists.newArrayList();
2. 构建单个Sheet的配置
对于每个Sheet,需要构建一个Map包含以下内容:
Map<String, Object> valueMap = Maps.newHashMap();
valueMap.put(NormalExcelConstants.PARAMS, view.getExportParams()); // 导出参数
valueMap.put(NormalExcelConstants.DATA_LIST, view.getDataList()); // 数据列表
valueMap.put(NormalExcelConstants.CLASS, view.getCls()); // 数据类型
3. 组装多Sheet配置
将所有Sheet配置添加到导出参数列表中:
exportParamList.add(valueMap);
4. 设置导出文件名
在模型数据中设置导出文件名:
modelMap.put(NormalExcelConstants.FILE_NAME, new DateTime().toString("yyyyMMddHHmmss"));
5. 设置多Sheet配置
将组装好的多Sheet配置放入模型数据:
modelMap.put(NormalExcelConstants.MAP_LIST, exportParamList);
6. 返回Excel视图
最后返回JeecgBoot的Excel视图:
return NormalExcelConstants.JEECG_EXCEL_VIEW;
完整示例代码
// 准备导出参数列表
List<Map<String, Object>> exportParamList = Lists.newArrayList();
// 获取业务数据(此处为示例,实际应根据业务调整)
ExportMoreView moreView = this.getBaseTransferService().mergeExportView(templateTypeCode);
// 遍历每个Sheet配置
for(ExportView view : moreView.getMoreViewList()) {
Map<String, Object> valueMap = Maps.newHashMap();
valueMap.put(NormalExcelConstants.PARAMS, view.getExportParams());
valueMap.put(NormalExcelConstants.DATA_LIST, view.getDataList());
valueMap.put(NormalExcelConstants.CLASS, view.getCls());
exportParamList.add(valueMap);
}
// 设置导出文件名
modelMap.put(NormalExcelConstants.FILE_NAME, new DateTime().toString("yyyyMMddHHmmss"));
// 设置多Sheet配置
modelMap.put(NormalExcelConstants.MAP_LIST, exportParamList);
// 返回Excel视图
return NormalExcelConstants.JEECG_EXCEL_VIEW;
关键点说明
-
数据源类型:虽然示例中使用了
ExportView
对象,但实际上可以直接使用Map结构作为数据源,只需确保数据结构与模板匹配。 -
动态列处理:当使用Map作为数据源时,Excel列会动态匹配Map的key值,这为处理动态列提供了便利。
-
性能考虑:对于大数据量导出,建议分批处理数据,避免内存溢出。
-
样式定制:可以通过
ExportParams
对象定制每个Sheet的表头样式、标题等属性。
常见问题解决方案
-
Sheet名称设置:在
ExportParams
中设置title
属性作为Sheet名称。 -
列顺序问题:当使用Map时,列顺序可能不稳定,建议在模板中明确指定列顺序。
-
数据类型转换:Map中的值会自动转换为Excel单元格类型,但复杂对象需要特殊处理。
通过上述方法,开发者可以灵活地在JeecgBoot项目中实现基于Map数据源的多Sheet导出功能,满足各种复杂的业务导出需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0377- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









