Catboost中交叉验证模型与循环训练模型的差异分析
2025-05-27 12:36:47作者:虞亚竹Luna
概述
在使用Catboost进行机器学习建模时,开发者可能会发现通过cv
函数训练的交叉验证模型与通过循环手动分折训练的模型之间存在性能差异。本文将深入分析这种差异产生的原因,并提供解决方案。
问题现象
当使用Catboost进行模型训练时,开发者发现以下两种训练方式产生的模型在评估指标上存在差异:
- 循环训练方式:手动划分训练集和验证集,循环训练多个模型
- cv函数方式:直接使用Catboost内置的
cv
函数进行交叉验证
即使设置了相同的超参数(如迭代次数、损失函数、评估指标、随机种子和学习率),两种方式得到的模型性能仍然不同。
原因分析
经过深入调查,发现这种差异主要由以下几个因素导致:
- 隐藏参数差异:
cv
函数内部会设置一些默认参数,这些参数在手动创建CatBoostClassifier
时不会自动设置 - 特殊参数影响:如
force_unit_auto_pair_weights
、bayesian_matrix_reg
等参数会影响模型训练过程 - 元信息选项:
pool_metainfo_options
参数在两种训练方式下可能有不同设置 - 排列次数:
permutation_count
参数可能影响特征重要性计算
解决方案
要确保两种训练方式得到一致的模型结果,可以采取以下步骤:
- 从
cv
函数训练的模型中获取完整参数集 - 过滤掉特定的内部参数
- 使用过滤后的参数初始化新的分类器
具体实现代码如下:
# 从cv模型获取参数
params = cv_model.get_all_params()
# 移除特定内部参数
exclude_params = ['force_unit_auto_pair_weights',
'bayesian_matrix_reg',
'pool_metainfo_options',
'permutation_count']
for key in exclude_params:
if key in params:
del params[key]
# 使用过滤后的参数初始化新模型
model = CatBoostClassifier(**params)
实践建议
- 参数一致性检查:在比较不同训练方式时,务必确保所有参数完全一致
- 参数获取:使用
get_all_params()
方法获取模型的完整参数集 - 参数过滤:了解哪些参数会影响模型训练过程,必要时进行过滤
- 版本兼容性:注意不同Catboost版本可能在参数默认值上有差异
总结
Catboost中cv
函数与循环训练方式产生差异的主要原因是隐藏参数的不同设置。通过获取完整参数集并过滤特定参数,可以确保两种训练方式得到一致的模型结果。开发者在进行模型对比时,应当特别注意参数的完整性和一致性,以避免因参数设置不同而导致的性能差异。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~047CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K