Catboost中交叉验证模型与循环训练模型的差异分析
2025-05-27 02:11:13作者:虞亚竹Luna
概述
在使用Catboost进行机器学习建模时,开发者可能会发现通过cv函数训练的交叉验证模型与通过循环手动分折训练的模型之间存在性能差异。本文将深入分析这种差异产生的原因,并提供解决方案。
问题现象
当使用Catboost进行模型训练时,开发者发现以下两种训练方式产生的模型在评估指标上存在差异:
- 循环训练方式:手动划分训练集和验证集,循环训练多个模型
- cv函数方式:直接使用Catboost内置的
cv函数进行交叉验证
即使设置了相同的超参数(如迭代次数、损失函数、评估指标、随机种子和学习率),两种方式得到的模型性能仍然不同。
原因分析
经过深入调查,发现这种差异主要由以下几个因素导致:
- 隐藏参数差异:
cv函数内部会设置一些默认参数,这些参数在手动创建CatBoostClassifier时不会自动设置 - 特殊参数影响:如
force_unit_auto_pair_weights、bayesian_matrix_reg等参数会影响模型训练过程 - 元信息选项:
pool_metainfo_options参数在两种训练方式下可能有不同设置 - 排列次数:
permutation_count参数可能影响特征重要性计算
解决方案
要确保两种训练方式得到一致的模型结果,可以采取以下步骤:
- 从
cv函数训练的模型中获取完整参数集 - 过滤掉特定的内部参数
- 使用过滤后的参数初始化新的分类器
具体实现代码如下:
# 从cv模型获取参数
params = cv_model.get_all_params()
# 移除特定内部参数
exclude_params = ['force_unit_auto_pair_weights',
'bayesian_matrix_reg',
'pool_metainfo_options',
'permutation_count']
for key in exclude_params:
if key in params:
del params[key]
# 使用过滤后的参数初始化新模型
model = CatBoostClassifier(**params)
实践建议
- 参数一致性检查:在比较不同训练方式时,务必确保所有参数完全一致
- 参数获取:使用
get_all_params()方法获取模型的完整参数集 - 参数过滤:了解哪些参数会影响模型训练过程,必要时进行过滤
- 版本兼容性:注意不同Catboost版本可能在参数默认值上有差异
总结
Catboost中cv函数与循环训练方式产生差异的主要原因是隐藏参数的不同设置。通过获取完整参数集并过滤特定参数,可以确保两种训练方式得到一致的模型结果。开发者在进行模型对比时,应当特别注意参数的完整性和一致性,以避免因参数设置不同而导致的性能差异。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355