Catboost中交叉验证模型与循环训练模型的差异分析
2025-05-27 20:31:58作者:虞亚竹Luna
概述
在使用Catboost进行机器学习建模时,开发者可能会发现通过cv函数训练的交叉验证模型与通过循环手动分折训练的模型之间存在性能差异。本文将深入分析这种差异产生的原因,并提供解决方案。
问题现象
当使用Catboost进行模型训练时,开发者发现以下两种训练方式产生的模型在评估指标上存在差异:
- 循环训练方式:手动划分训练集和验证集,循环训练多个模型
- cv函数方式:直接使用Catboost内置的
cv函数进行交叉验证
即使设置了相同的超参数(如迭代次数、损失函数、评估指标、随机种子和学习率),两种方式得到的模型性能仍然不同。
原因分析
经过深入调查,发现这种差异主要由以下几个因素导致:
- 隐藏参数差异:
cv函数内部会设置一些默认参数,这些参数在手动创建CatBoostClassifier时不会自动设置 - 特殊参数影响:如
force_unit_auto_pair_weights、bayesian_matrix_reg等参数会影响模型训练过程 - 元信息选项:
pool_metainfo_options参数在两种训练方式下可能有不同设置 - 排列次数:
permutation_count参数可能影响特征重要性计算
解决方案
要确保两种训练方式得到一致的模型结果,可以采取以下步骤:
- 从
cv函数训练的模型中获取完整参数集 - 过滤掉特定的内部参数
- 使用过滤后的参数初始化新的分类器
具体实现代码如下:
# 从cv模型获取参数
params = cv_model.get_all_params()
# 移除特定内部参数
exclude_params = ['force_unit_auto_pair_weights',
'bayesian_matrix_reg',
'pool_metainfo_options',
'permutation_count']
for key in exclude_params:
if key in params:
del params[key]
# 使用过滤后的参数初始化新模型
model = CatBoostClassifier(**params)
实践建议
- 参数一致性检查:在比较不同训练方式时,务必确保所有参数完全一致
- 参数获取:使用
get_all_params()方法获取模型的完整参数集 - 参数过滤:了解哪些参数会影响模型训练过程,必要时进行过滤
- 版本兼容性:注意不同Catboost版本可能在参数默认值上有差异
总结
Catboost中cv函数与循环训练方式产生差异的主要原因是隐藏参数的不同设置。通过获取完整参数集并过滤特定参数,可以确保两种训练方式得到一致的模型结果。开发者在进行模型对比时,应当特别注意参数的完整性和一致性,以避免因参数设置不同而导致的性能差异。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19