Elasticsearch.NET 8.x 版本中SourceIncludes字段过滤的使用指南
背景介绍
在Elasticsearch.NET客户端库中,字段过滤是一个常见的优化需求。开发者通常只需要检索文档的部分字段而非全部内容,这可以显著减少网络传输数据量并提高查询性能。在NEST客户端中,这一功能通过SourceIncludes方法实现,但在迁移到Elastic.Clients.Elasticsearch 8.x版本时,开发者可能会遇到一些使用上的变化。
新旧版本实现差异
在NEST客户端中,字段过滤的典型实现方式如下:
search = search.Source(s => s
.Includes(i => i
.Fields(
f => f.Id,
f => f.Title
)
)
);
这种方式会在请求体中生成_source.includes字段,明确指定需要返回的字段列表。
而在Elastic.Clients.Elasticsearch 8.x版本中,默认的SourceIncludes方法行为发生了变化:
search = search.SourceIncludes(Fields.FromFields([
Infer.Field<SearchAlert>(f => f.Id),
Infer.Field<SearchAlert>(f => f.Title)
]));
8.x版本的正确使用方式
经过验证,8.x版本中有两种实现字段过滤的方法:
- URL参数方式(默认行为):
search = search.SourceIncludes(Fields.FromFields([
Infer.Field<SearchAlert>(f => f.Id),
Infer.Field<SearchAlert>(f => f.Title)
]));
这种方式会将过滤字段作为URL参数发送,而不是放在请求体中。
- 请求体方式:
search = search.Source(new SourceConfig(new SourceFilter
{
Includes = Fields.FromFields([
Infer.Field<SearchAlert>(f => f.Id),
Infer.Field<SearchAlert>(f => f.Title)
])
}));
这种方式会在请求体中生成_source字段,与NEST客户端的行为一致。
字段指定方法
在8.x版本中,推荐使用Infer类来指定字段:
Infer.Fields<MyDocument>(x => x.Field1, x => x.Field2)
这种方式既清晰又类型安全,能够有效避免字段名拼写错误的问题。
实际应用建议
-
如果需要与旧系统保持兼容,或者明确需要在请求体中包含字段过滤信息,请使用请求体方式。
-
对于新开发的项目,URL参数方式是更高效的选择,因为它减少了请求体的大小。
-
在复杂查询场景中,特别是需要同时使用字段包含和排除规则时,
SourceFilter提供了更灵活的控制能力。
总结
Elasticsearch.NET 8.x版本在字段过滤功能上提供了更多的灵活性,开发者可以根据实际需求选择不同的实现方式。理解这些差异有助于在迁移过程中做出正确的技术选择,确保查询性能和数据传输效率的最优化。
对于从NEST迁移过来的开发者,建议逐步适应新的API设计理念,同时利用类型安全的字段指定方式来提高代码的健壮性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00