Elasticsearch.NET 8.x 版本中SourceIncludes字段过滤的使用指南
背景介绍
在Elasticsearch.NET客户端库中,字段过滤是一个常见的优化需求。开发者通常只需要检索文档的部分字段而非全部内容,这可以显著减少网络传输数据量并提高查询性能。在NEST客户端中,这一功能通过SourceIncludes
方法实现,但在迁移到Elastic.Clients.Elasticsearch 8.x版本时,开发者可能会遇到一些使用上的变化。
新旧版本实现差异
在NEST客户端中,字段过滤的典型实现方式如下:
search = search.Source(s => s
.Includes(i => i
.Fields(
f => f.Id,
f => f.Title
)
)
);
这种方式会在请求体中生成_source.includes
字段,明确指定需要返回的字段列表。
而在Elastic.Clients.Elasticsearch 8.x版本中,默认的SourceIncludes
方法行为发生了变化:
search = search.SourceIncludes(Fields.FromFields([
Infer.Field<SearchAlert>(f => f.Id),
Infer.Field<SearchAlert>(f => f.Title)
]));
8.x版本的正确使用方式
经过验证,8.x版本中有两种实现字段过滤的方法:
- URL参数方式(默认行为):
search = search.SourceIncludes(Fields.FromFields([
Infer.Field<SearchAlert>(f => f.Id),
Infer.Field<SearchAlert>(f => f.Title)
]));
这种方式会将过滤字段作为URL参数发送,而不是放在请求体中。
- 请求体方式:
search = search.Source(new SourceConfig(new SourceFilter
{
Includes = Fields.FromFields([
Infer.Field<SearchAlert>(f => f.Id),
Infer.Field<SearchAlert>(f => f.Title)
])
}));
这种方式会在请求体中生成_source
字段,与NEST客户端的行为一致。
字段指定方法
在8.x版本中,推荐使用Infer
类来指定字段:
Infer.Fields<MyDocument>(x => x.Field1, x => x.Field2)
这种方式既清晰又类型安全,能够有效避免字段名拼写错误的问题。
实际应用建议
-
如果需要与旧系统保持兼容,或者明确需要在请求体中包含字段过滤信息,请使用请求体方式。
-
对于新开发的项目,URL参数方式是更高效的选择,因为它减少了请求体的大小。
-
在复杂查询场景中,特别是需要同时使用字段包含和排除规则时,
SourceFilter
提供了更灵活的控制能力。
总结
Elasticsearch.NET 8.x版本在字段过滤功能上提供了更多的灵活性,开发者可以根据实际需求选择不同的实现方式。理解这些差异有助于在迁移过程中做出正确的技术选择,确保查询性能和数据传输效率的最优化。
对于从NEST迁移过来的开发者,建议逐步适应新的API设计理念,同时利用类型安全的字段指定方式来提高代码的健壮性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++020Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









