ScrapeGraphAI在Jupyter Notebook中的使用指南与问题解决
概述
ScrapeGraphAI是一个强大的网络爬取工具,但在Jupyter Notebook环境中使用时可能会遇到一些特殊问题。本文将详细介绍如何在Jupyter Notebook中正确配置和使用ScrapeGraphAI,并解决常见的RuntimeError和NotImplementedError问题。
环境准备
在Jupyter Notebook中使用ScrapeGraphAI需要先安装必要的依赖包:
!pip install scrapegraphai
!apt install chromium-chromedriver
!pip install nest_asyncio
!pip install playwright
!playwright install
这些命令会安装ScrapeGraphAI核心库、浏览器驱动以及异步处理所需的工具。
异步问题解决方案
Jupyter Notebook本身运行在一个事件循环中,直接使用asyncio.run()会导致RuntimeError。解决方法是在代码开头添加:
import nest_asyncio
nest_asyncio.apply()
这段代码允许在现有的异步环境中再次运行异步代码,解决了"RuntimeError: asyncio.run() cannot be called from a running event loop"的问题。
API密钥配置
使用ScrapeGraphAI需要配置API密钥:
OPENAI_API_KEY = "你的API密钥"
确保密钥正确设置,否则后续操作将无法进行。
Playwright集成问题
当使用Playwright作为后端时,可能会遇到NotImplementedError。这通常是由于Playwright未正确安装或配置导致的。确保执行了以下步骤:
- 已安装Playwright (
pip install playwright) - 已安装浏览器驱动 (
playwright install) - 在代码中正确指定了Playwright作为后端
实际应用示例
以下是一个完整的Jupyter Notebook使用示例:
# 1. 安装依赖
!pip install scrapegraphai nest_asyncio playwright
!playwright install
# 2. 解决异步问题
import nest_asyncio
nest_asyncio.apply()
# 3. 配置API密钥
OPENAI_API_KEY = "你的API密钥"
# 4. 导入并创建图形实例
from scrapegraphai.graphs import SmartScraperGraph
graph_config = {
"llm": {
"api_key": OPENAI_API_KEY,
"model": "gpt-3.5-turbo"
}
}
smart_scraper = SmartScraperGraph(
prompt="列出页面上的所有产品",
source="目标网址",
config=graph_config
)
# 5. 执行爬取
result = smart_scraper.run()
print(result)
常见问题排查
-
RuntimeError问题:确保已应用nest_asyncio,并且没有在其他地方手动创建事件循环。
-
NotImplementedError问题:检查Playwright是否正确安装,尝试重新安装浏览器驱动。
-
性能问题:在Jupyter中运行大量异步任务时,考虑分批处理或增加延迟。
最佳实践
-
在单独的代码单元格中安装依赖,避免重复安装。
-
将配置参数集中管理,便于维护和修改。
-
对于复杂爬取任务,考虑先在小型测试用例上验证,再扩展到完整数据集。
通过遵循这些指南,开发者可以充分利用ScrapeGraphAI在Jupyter Notebook环境中的强大功能,同时避免常见的陷阱和问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00